欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1875-1883.doi: 10.3724/SP.J.1006.2012.01875

• 耕作栽培·生理生化 • 上一篇    下一篇

花生种子白藜芦醇含量与黄曲霉产毒抗性的关系

王后苗,黄家权,雷永,晏立英,王圣玉,姜慧芳,任小平,娄庆任,廖伯寿*   

  1. 中国农业科学院油料作物研究所 / 农业部油料作物生物学与遗传育种重点实验室,湖北武汉 430062
  • 收稿日期:2012-04-05 修回日期:2012-06-20 出版日期:2012-10-12 网络出版日期:2012-07-27
  • 通讯作者: 廖伯寿, E-mail: lboshou@hotmail.com, Tel: 027-86712292
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项(200903004), 国家现代农业产业技术体系建设专项(CARS-14)和引进国际先进农业科学技术计划(948计划)(2012-S3)。

Relationship of Resveratrol Content and Resistance to Aflatoxin Accumulation Caused by Aspergillus flavus in Peanut Seeds

WANG Hou-Miao,HUANG Jia-Quan,LEI Yong,YAN Li-Ying,WANG Sheng-Yu,JIANG Hui-Fang,REN Xiao-Ping,LOU Qing-Ren, LIAO Bo-Shou*   

  1. Oil Crops Research Institute of Chinese Academy of Agricultural Science / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
  • Received:2012-04-05 Revised:2012-06-20 Published:2012-10-12 Published online:2012-07-27
  • Contact: 廖伯寿, E-mail: lboshou@hotmail.com, Tel: 027-86712292

摘要:

选用抗黄曲霉产毒的花生品(系)和高产毒品种(系), 采用强产毒菌株AF2202人工接种水分吸涨的花生种子, 培养7 d后,测定接种和未接种的花生种子中白藜芦醇及黄曲霉毒素含量,探讨白藜芦醇与花生种子黄曲霉产毒抗性之间的关系。结果表明,抗黄曲霉产毒花生品种(系)的白藜芦醇含量较高,平均为37.3 µg kg–1,高产毒品种含量相对较低,平均为13.3 µg kg–1,抗、感品种之间存在显著差异。吸胀处理后抗产毒花生品种(系)白藜芦醇含量提高2.0倍,感病品种(系)仅提高1.6倍,对不同品种(系)处理后的种子二次接种,令黄曲霉毒素含量下降37.6%~75.8%,但吸胀处理后抗产毒品种(系)的黄曲霉毒素含量仍低于感病品种(系)。相关分析表明,花生白藜芦醇含量与黄曲霉毒素含量呈显著负相关,并且在离体培养基中添加浓度大于3.0 μg mL–1的白藜芦醇可导致黄曲霉菌产毒量大幅下降,说明白藜芦醇对黄曲霉产毒具有抑制作用。

关键词: 花生, 白藜芦醇, 黄曲霉产毒抗性

Abstract:

Resveratrol is an important component of phytoalexins responding to biotic and abiotic stresses. To investigate the possible influence of peanut resveratrol on aflatoxin production by Aspergillus flavus, we selected eight peanut varieties (lines) resistant or susceptible to aflatoxin accumulation resveratrol content and aflatoxin production. The results showed that the average resveratrol content (37.3 µg kg–1) of resistant varieties (lines) was significantly higher than that of susceptible ones (13.3 µg kg–1) in naturally dried seeds. Resveratrol accumulation amount increased by twice in imbibed resistant peanut seeds, and by 1.6 flod in those of the susceptible ones, and the consequent aflatoxin content declined in the imbibed seeds from 37.6% to 75.8%. However, the resistant varieties (lines) had lower aflatoxin content compared with the susceptible seeds in the imbibition treatments. Resveratrol content in peanut seeds was negatively correlated with aflatoxin production. Trials in vitro also demonstrated that resveratrol could inhibit aflatoxin production in medium. It was suggested that resveratrol is one of the phytoalexins highly related to resistance to aflatoxin production in peanut seeds. As resveratrol has been reported to have certain functions in human health protection, increased resveratrol in peanut would enhance food safety of peanut products and contribute to consumer’s health.caused byAspergillus flavus to determine

Key words: Peanut, Resveratrol, Resistance to aflatoxin production

[1]http://faostat.fao.org/site/339/default.aspx [2012-4-01]



[2]Yu S-L(禹山林). Peanut Breeding in China (中国花生遗传育种学). Shanghai: Shanghai Science and Technology Press, 2011 (in Chinese)



[3]Wicklow D T. Toxigenic Fungi-Their Toxins and Health Hazard. Samuels GL: Toxigenic fungi as Ascomycetes, 1984



[4]Rensburg S J, Cook-Mozaffari P, Schalkwyk D J, Watt J J, Vincent T J. Hepatocellular carcinoma and dietary aflatoxin in Mozambique and Transkei. J Cancer, 1985, 51: 713-726



[5]Williams J H, Phillips T D, Jolly P E, Stiles J K, Jolly C M, Aggarwal D. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr, 2004, 80: 1106-1122



[6]Payne G A, Brown M P. Genetics and physiology of aflatoxin biosynthesis. Annu Rev Phytopathol, 1998, 36: 329-362



[7]Keen N T. Isolation of phytoalexins from germination seeds of peanut. Phytopathol, 1975, 65: 91-92



[8]Ingham J L. 3,5,4-Trihydroxystibene as a phytoalexin from groundnut (Arachis hypogaea L.). Phytochem, 1976, 15: 1791-1793



[9]Basa S M. A phytoalexin and aflatoxin producing peanut seed culture system. Peanut Sci, 1994, 21: 103-134



[10]Hen S-L(何水林), Zheng J-G(郑金贵), Lin M(林明). Advances of biological function, regulatory mechanism of biosynthesis and genetic engineering of stilbenes in plant. J Agric Biotechnol (农业生物技术学报), 2004, 12(1): 102-108 (in Chinese with English abstract)



[11]Schroder G, Brown J W, Schroder J. Molecular analysis of resveratrol synthase: cDNA, genomic clones and relationship with chalcone synthase. Eur J Biochem, 1988, 172: 161-169



[12]Stark L, Nelke B, Hanbler G. Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep, 1997, 16: 668-673



[13]Fettig S, Hess D. Expression of a chimeric stilbene synthase gene in transgenic wheat lines. Transgenic Res, 1999, 8: 179-189



[14]Thomzik J E, Stenzel K, Stocker R. Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum M.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol, 1997, 51: 265-278



[15]Hain R, Bieseler B, Kindl H. Expression of a stilbene gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol, 1990, 15: 325-335



[16]Chung I M, Park M R, Chun J C, Yun S J. Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci, 2003, 164: 103-109



[17]Jeandet P, Bessis R, Maume B F, Meunier P, Peyron D, Trollat P. Effect of enological practices on the resveratrol isomer content of wine. J Agric Food Chem, 1995, 43: 316-319



[18]Holme A L, Pervaiz S. Resveratrol in cell fate decisions. J Bioenerget Biomembranes, 2007, 39: 59-63



[19]Chun M M. Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochem Pharmacol, 2002, 63: 99-104



[20]Nicholson S K, Tucker G A, Brameld J M. Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc Nutr Soc, 2008, 67: 42-47



[21]Kerry N L, Abbey M. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis, 1997, 135: 93-102



[22]Wang Z, Huang Y, Zou J. Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. Intl J Mol Med, 2002, 9: 77-79



[23]Heilbronn L K, Jonge L, Frisard M I, DeLany J P, Larson Meyer D E, Rood J, Nguyen T, Martin C K, Volaufova J, Most M M, Greenway F L. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. Am Med Assoc, 2006, 295: 1539-1548



[24]Bertelli A A, Das D K. Grapes, resveratrol, and heart health. J Cardiovascular Pharmacol, 2009, 54: 468



[25]Sanders T H, McMichael R W, Hendrix K W .Occurrence of resveratrol in edible peanuts. J Agric Food Chem, 2000, 48: 1243-1246



[26]Sobolev V S, Cole R J. Trans-resveratrol content in commercial peanuts and peanut products. J Agric Food Chem, 1999, 47: 1435-1439



[27]Chen R S, Wu P L, Robin Y Y. Peanut roots as a source of resveratrol. J Agric Food Chem, 2002, 50: 1665-1667



[28]Fajardo J E, Waniska R D, Cuero R G, Pettit R E. Phenolic compounds in peanut seed enhanced elicitation by chitosan and effects of growth and aflatoxin B1 producing by Aspergillus flavus. Food Biotechnol, 1994, 8: 191-211



[29]Amaya F J, Young C T, Norden A J. Chemical screening for Aspergillus flavus resistance in peanut. Oleagineux, 1990, 35: 255-259



[30]Guo B Z, Russin J S, Brown R L, Cleveland T E, Widstrom N W. Resistance to aflatoxin contamination in corn as influenced by relative humidity and kernel germination. J Food Protect, 1996, 59: 276-281



[31]Guo B Z, Brown R L, Lax A L, Cleveland T E, Russin J S, Widstrom N W. Protein profiles and antifungal activities of kernel extracts from corn genotypes resistant and susceptible to Aspergillus flavus. J Food Protect, 1998, 61: 98-102



[32]Guo B Z, Chen Z Y, Brown R L, Lax A R, Cleveland T E, Russin J S, Mehta A D, Selitrennikoff C P, Widstrom N W. Germination induces accumulation of specific proteins and antifungal activities in corn kernels. Phytopathol, 1997, 87: 1174-1178



[33]Dorner J W, Cole R J, Sanders T H, Blankenship P D. Interrelationship of kernel water activity, soil temperature, maturity and phytoalexin production in preharvest aflatoxin contamination of drought-stressed peanuts. Mycopathologia, 1989, 105: 117-128



[34]Liao B S, Zhuang W J, Tang R H, Zhang X Y, Shan S H, Jiang H F, Huang J Q. Peanut aflatoxin and genomics research in China: progress and perspectives. Peanut Sci, 2009, 36: 21-28



[35]Chen Z Y, Brown R L, Damann K E, Cleveland T E. Identification of a maize kernel stress-related protein and its effect on aflatoxin accumulation. Phytopathol, 2004, 94: 938-945



[36]Wang, M L, Pittman R N. Resveratrol content in seeds of peanut germlasm quantified by HPLC. Plant Genet Resour: Characterization and Utilization, 2008, 7: 80-83



[37]Xiao D-R(肖达人), Wang S-Y(王圣玉), Zhang H-L(张洪玲). Rapid identifying method for resistance to aflatoxin production in peanut. Chin J Oil Crop Sci (中国油料作物学报), 1999, 21(3): 72-76 (in Chinese with English abstract)



[38]Tian L-R(田立荣), Liao B-S(廖伯寿), Wang S-Y(王圣玉), Lei Y(雷永), Yan L-Y(晏立英), Huang J-Q(黄家权), Li D(李栋), Ren X-P(任小平), Xiao Y(肖洋). Evaluation of resistance to aflatoxin formation in peanut RILs. Chin J Oil Crop Sci (中国油料作物学报), 2009, 31(4): 455-459 (in Chinese with English abstract)



[39]Liao B-S(廖伯寿), Lei Y(雷永), Li D(李栋),Wang S-Y(王圣玉), Huang J-Q(黄家权), Ren X-P(任小平), Jiang H-F(姜慧芳), Yan L-Y(晏立英). Novel high oil germplasm with resistance to Aspergillus flavus and bacterial wilt Developed from recombinant inbred lines. Acta Agron Sin (作物学报), 2010, 36(8): 1296-1301 (in Chinese with English abstract)



[40]Holmes R A, Boston R S, Payne G A. Diverse inhibitors of aflatoxin biosynthesis. Appl Microbio Biot, 2008, 78: 559-572



[41]Norton R A. Inhibition of aflatoxin B1 biosynthesis in Aspergillus flavus by anthocyanidins and related flavonoids. J Agric Food Chem, 1999, 47: 1230-1235



[42]DeLucca A M, Daigle D. Depression of aflatoxin production by flavonoid-type compounds from peanut shells. Phytopathol, 1987, 77: 1560-1563



[43]Azaizeh H A, Pettit R E, Sarr B A, Phillips T. Effect of peanut tannin extracts on growth of Aspergillus parasiticus and aflatoxin production. Mycopathologia, 1990, 110(3): 125-132



[44]Liang X-Q(梁炫强), Zhou G-Y(周桂元), Zou S-C(邹世春). Differential induction of resveratrol in susceptible and resistant peanut seeds infected by Aspergillus flavus. Chin J Oil Crop Sci (中国油料作物学报), 2006, 28(1): 59-62 (in Chinese with English abstract)



[45]Gehm B D, McAndrews J M, Chien P Y, Jameson J L. Resveratrol, a polyphenolic compound found in and grapes wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci USA, 1997, 94: 14138-14143

[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[7] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[8] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[9] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[10] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[11] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[12] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[13] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[14] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[15] 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!