欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (11): 2069-2077.doi: 10.3724/SP.J.1006.2012.02069

• 耕作栽培·生理生化 • 上一篇    下一篇

黑龙江省不同年代玉米杂交种氮肥利用效率对种植密度和施氮水平的响应

钱春荣1,3,于洋3,宫秀杰3,姜宇博3,赵杨3,郝玉波3,李梁3,张卫建1,2,*   

  1. 1 南京农业大学应用生态研究所,江苏南京210095;2 中国农业科学院作物科学研究所 / 农业部作物生理生态重点实验室,北京100081;3 黑龙江省农业科学院耕作栽培研究所,黑龙江哈尔滨150086
  • 收稿日期:2012-03-28 修回日期:2012-07-05 出版日期:2012-11-12 网络出版日期:2012-09-10
  • 通讯作者: 张卫建, E-mail: zhangweij@caas.net.cn, Tel: 010-62156856
  • 基金资助:

    本研究由国家“十二五”科技支撑计划项目(2011BAD16B14),国家重点基础研究发展计划(973计划)项目(2009CB118601),国家公益性行业(农业)科研专项(200903001-06-5)和黑龙江省自然科学基金项目(C201008)资助。

Response of Nitrogen Use Efficiency to Plant Density and Nitrogen Application Rate for Maize Hybrids from Different Eras in Heilongjiang Province

QIAN Chun-Rong1,3,YU Yang3,GONG Xiu-Jie3,JIANG Yu-Bo3,ZHAO Yang3,HAO Yu-Bo3,LI Liang3,ZHANG Wei-Jian1,2,*   

  1. 1 Institute of Applied Ecology, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China; 3 Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
  • Received:2012-03-28 Revised:2012-07-05 Published:2012-11-12 Published online:2012-09-10
  • Contact: 张卫建, E-mail: zhangweij@caas.net.cn, Tel: 010-62156856

摘要:

以黑龙江省近50年来第I积温带大面积种植的8个典型春玉米品种为材料,于2009—2010年进行密度和施肥的田间试验,比较不同年代主栽品种氮肥偏生产力(PFP)、氮肥农学效率(NAE)、氮肥吸收利用率(NRE)及主要器官氮含量对密度和氮素的响应差异。结果显示,1970s—2000s品种更替过程中,PFP和NRE呈递增趋势,增幅分别为3.41 kg kg-1 10年-1和2.26个百分点10年-1。NAE在1970s—1990s呈显著递增趋势,之后呈下降趋势。氮收获指数随年代递增呈显著下降趋势,平均每10年下降1.51个百分点;茎、叶和籽粒氮积累量随年代推进呈显著递增趋势,平均每10年分别递增0.09、0.07和0.12 g株-1;上述各主要指标在年代、密度和氮肥水平之间存在显著的互作效应。各年代品种的氮肥利用效率均随氮肥水平的提高而显著下降,随密度的增加呈抛物线形变化趋势,最高效率值出现在50 000—70 000株 hm-2范围内,现代品种的最高氮效率的种植密度高于老品种。各年代品种籽粒、叶片、茎氮素积累量和氮收获指数随密度增加呈显著递减趋势。各年代品种籽粒、茎和叶片氮素积累量随施氮量增加呈增加趋势,施氮量对氮收获指数影响各年代品种表现不同。上述结果表明,品种改良的氮肥增效潜力较大。在现有的品种状况下,增密不仅可以增产,而且可以显著提高肥料效率。

关键词: 中国东北, 粮食安全, 资源利用效率, 品种演变, 高产高效

Abstract:

n this study, eight typical maize hybrids released from 1970s to 2000s in Heilongjiang Province were selected to investigate the responses of grain yield, Nitrogen (N) partial factor productivity (PFP), N agronomic efficiency (NAE) and N recovery efficiency (NRE) to N application rate and plant density in 2009 and 2010. During the variety improvement period of 1970s–2000s, PFP and NRE increased significantly by 3.41 kg kg-1 10 yr-1 and 2.26 per cent 10 yr-1, respectively. NAE increased significantly from 1970 to 2000 and descended after 2000. N harvest index decreased significantly by 1.51 per cent 10 yr-1. Grain N, stem N and leaf N accumulations rose significantly by 0.09, 0.07, and 0.12 g plant-1 10 yr-1. There were significant interactions among eras, plant densities and N application rates for above indicators. Nitrogen use efficiency exhibited decline trends with increasing N application rate and parabolic shape response to increasing plant density, and got the maximum in the population range of 50 000–70 000 plants ha-1. The theoretical optimal plant density for the maximal NUE was higher in newer hybrids than in the older ones. Higher plant population led to decrease N accumulation and N harvest index in grain, stem and leaf for all hybrids from different eras. Higher N application rate tended to promote N accumulation in grain, stem and leaf, but had different effects on N harvest index for hybrids from different eras. Compared to the varieties released abroad, there is a great potential in maize variety improvement for high-yield and higher-NUE in Northeast China. According to the existing variety’s traits, increasing plant density can enhance not only maize yield but also NUE.

Key words: Northeast China, Food security, Resource use efficiency, Maize variety succession, High-yield with high efficiency

[1]Hirel B, Gouis J L, Ney B, Gallais A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within intergrated approaches. J Exp Bot, 2007, 58: 2369–2387



[2]Delmer D. Agriculture in the developing world: connecting innovations in plant research to downstream applications. Proc Natl Acad Sci USA, 2005, 102: 15739–15746



[3]Duvick D N. The contribution of breeding to yield advances in maize (Zea mays L.). In: Duvick D N, Sparks L, eds. Advances in Agronomy. San Diego, CA: Academic Press, 2005. pp 83–145



[4]Duvick D N. Genetic progress in yield of United States maize (Zea mays L.). Maydica, 2005, 50: 193–202



[5]Duvick D N, Cassman K G. Post-green revolution trends in yield potential of temperate maize in the North-central United States. Crop Sci, 1999, 39: 1622–1630



[6]Qiao C G, Wang Y J, Guo H A, Chen X J, Liu J Y, Li S Q. A review of advances in maize production in Jilin province during 1974–1993. Field Crops Res, 1996, 47: 65–75



[7]Russell W A.Genetic improvement of maize yields. Adv Agron, 1991, 46: 245–298



[8]Duvick D N. Genetic contributions to advances in yield of U.S. maize. Maydica, 1992, 37: 39–79



[9]Luque S F, Cirilo A G, Otegui M E. Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids. Field Crops Res, 2006, 95: 383–397



[10]Eyherabide G H, Damilano A L, Colazo J C. Genetic gain for grain yield of maize in Argentina. Maydica, 1994, 39: 207–211



[11]Cunha Fernandes J S, Franzon J F. Thirty years of genetic progress in maize (Zea mays L.) in a tropical environment. Maydica, 1997, 42: 21–27



[12]Xie Z-J(谢振江), Li M-S(李明顺), Xu J-S(徐家舜), Zhang S-H(张世煌). Contributions of genetic improvement to yields of maize hybrids during different eras in North China. Sci Agric Sin (中国农业科学), 2009, 42(3): 781–789 (in chinese with English abstract)



[13]Hu C-H(胡昌浩), Dong S-T(董树亭), Wang K-J(王空军), Sun Q-Q(孙庆泉). Studies on development law for main agronomice characters of maize hybrid in different eras. J Maize Sci (玉米科学), 1998, 6(3): 50–54 (in Chinese)



[14]Duvick D N. Genetic contributions to yield gains of U.S. hybrid maize, 1930 to 1980. In: Fehr W R ed. Genetic Contributions to Yield Gains of Five Major Crop Plants. CSSA Special Publication 7. Madison, WI: ASA and CSSA, 1984. pp 15–47



[15]Tollenaar M, Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci, 1999, 39: 1597–1604



[16]Echarte L, Luque S, Andrade F H, Sadras V O, Cirilo A, Otegui M E, Vega C R C. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1993. Field Crops Res, 2000, 68: 1–8



[17]Sangoi L, Ender M, Guidolin A F, Almeida M L, Konflanz V A. Nitrogen fertilization impact on agronomic traits of maize hybrids released at different decades. Pesquisa Agropecuaria Brasileira, 2001, 36: 757–764



[18]McCullough D E, Aguilera A, Tollenaar M. N uptake, N partitioning, and photosynthetic N-use efficiency of an old and a new maize hybrid. Can J Plant Sci, 1994, 74: 479–484



[19]Sangoi L, Gracietti M A, Rampazzo C, Bianchetti P. Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Res, 2002, 79: 39–51



[20]Carlone M R, Russell W A. Response to plant densities and nitrogen levels for four maize cultivars from different eras of breeding. Crop Sci, 1987, 27: 465–470



[21]Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Res, 2002, 75: 161–169



[22]Ci X K, Li M S, Xu J S, Lu Z Y, Bai P F, Ru G L, Liang X L, Zhang D G, Li X H, Bai L, Xie C X, Hao Z F, Zhang S H, Dong S T. Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000s. Euphytica, 2012, 185: 395–406



[23]O'Neill P M, Shanahan J F, Schepers J S, Caldwell B. Agronomic responses of corn hybrids from different eras to deficit and adequate levels of water and nitrogen. Agron J, 2004, 96: 1660–1667



[24]Wu Q P, Chen F J, Chen Y L, Yuan L X, Zhang F S, Mi G H. Root growth in response to nitrogen supply in Chinese maize hybrids released between 1973 and 2009. Sci China (Ser C: Life Sci), 2011, 54(7): 642–650



[25]Ding L, Wang K J, Jiang G M, Biswas D K, Xu H, Li L F, Li Y H. Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Ann Bot, 2005, 96: 925–930



[26]Dyson T. World food tredns and prospects to 2025. Proc Natl Acad Sci USA, 1999, 96: 5929–5936



[27]Zhang F-S(张福锁), Wang J-Q(王激清), Zhang W-F(张卫峰), Cui Z-L(崔振岭), Ma W-Q(马文奇), Chen X-P(陈新平), Jiang R-F(江荣风). Nutrient use efficiencies of major ceral crops in China and measures for improvement. Acta Pedol Sin (土壤学报), 2008, 45(5): 915–924 (in Chinese with English abstract)



[28]Ma B L, Subedi K D, Liu A. Variations in grain nitrogen removal associated with management practices in maize production. Nutr Cycl Agroecosyst, 2006, 76: 67–80



[29]Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agron J, 1999, 91: 357–363



[30]Castleberry R M, Crum C W, Krull F. Genetic yield improvement of U.S. maize cultivars under varying fertility and climatic environments. Crop Sci, 1984, 24: 33–36



[31]Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J, 1982, 74: 562–564



[32]Cardwell V B. Fifty years of Minnesota corn production: Sources of yield increase. Agron J, 1982, 74: 984–990



[33]Ciampitti I A, Vyn T J. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Res, 2011, 121: 2–18



[34]Osaki M, Makoto L, Toshiaki T. Ontogenetic changes in the contents of ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, and chlorophyll in individual leaves of maize. Soil Sci Plant Nutr, 1995, 41: 285−293



[35]Lü L-H(吕丽华), Tao H-B(陶洪斌), Wang P(王璞), Liu M(刘明), Zhao M(赵明), Wang R-Z(王润正). Carbon and nitrogen metabolism and nitrogen use efficiency in summer maize under different planting densities. Acta Agron Sin (作物学报), 2008, 34(4): 718−723 (in Chinese with English abstract)



[36]Qian C-R(钱春荣). Response to Plant Density and Nitrogen Application Rate for Maize Hybrids and Cultivation Approach for High-Yield with High-Efficiency in Northeast China. PhD Dissertation of Nanjing Agricultural University, 2012 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941.
[3] 闫岩, 张钰石, 刘础荣, 任丹阳, 刘洪润, 刘雪晴, 张明才, 李召虎. 冬小麦-夏玉米轮作“双晚”种植模式下的品种匹配与资源效率[J]. 作物学报, 2022, 48(2): 423-436.
[4] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[5] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531.
[6] 周宝元,葛均筑,侯海鹏,孙雪芳,丁在松,李从锋,马玮,赵明. 黄淮海平原南部不同种植体系周年气候资源分配与利用特征研究[J]. 作物学报, 2020, 46(6): 937-949.
[7] 周宝元,马玮,孙雪芳,丁在松,李从锋,赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究[J]. 作物学报, 2019, 45(4): 589-600.
[8] 李淑娅,田少阳,袁国印,葛均筑,徐莹,王梦影,曹凑贵,翟中兵,凌霄霞,展茗,赵明. 长江中游不同玉稻种植模式产量及资源利用效率的比较研究[J]. 作物学报, 2015, 41(10): 1537-1547.
[9] 周宝元, 王志敏, 岳阳, 马玮, 赵明. 冬小麦-夏玉米与双季玉米种植模式产量及光温资源利用特征比较[J]. 作物学报, 2015, 41(09): 1393-1405.
[10] 张常赫,戴艳娇,杨洪坤,张馨月,杜祥备,陈兵林,周治国*. 不同栽培方式对长江下游棉田资源利用效率的影响[J]. 作物学报, 2015, 41(07): 1105-1111.
[11] 靳立斌,崔海岩,李波,杨今胜,董树亭,赵斌,刘鹏,张吉旺. 综合农艺管理对夏玉米氮效率和土壤硝态氮的影响[J]. 作物学报, 2013, 39(11): 2009-2015.
[12] 高虹,李飞飞,吕国依,夏英俊,王嘉宇,孙健,唐亮,徐正进. 籼粳稻杂交对中国东北粳稻品质的影响[J]. 作物学报, 2013, 39(10): 1806-1813.
[13] 李志杰,张振平,张艺,邓艾兴,宋振伟,郑成岩,张卫建. 辽宁不同年代水稻品种生产力和氮肥效率对施氮水平的响应差异[J]. 作物学报, 2013, 39(09): 1679-1686.
[14] 李敏,张洪程,杨雄,葛梦婕,马群,魏海燕,戴其根,霍中洋,许轲. 水稻高产氮高效型品种的物质积累与转运特性[J]. 作物学报, 2013, 39(01): 101-109.
[15] 钱春荣,于洋,宫秀杰,姜宇博,赵杨,王俊河,杨忠良,张卫建. 黑龙江省不同年代玉米杂交种产量对种植密度和施氮水平的响应[J]. 作物学报, 2012, 38(10): 1864-1874.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!