作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2306-2311.doi: 10.3724/SP.J.1006.2012.02306
周精华1,余伟林1,邢虎成1,2,揭雨成1,2*,钟英丽1,3,敬礼恒1
ZHOU Jing-Hua1, YU Wei-Lin1, XING Hu-Cheng1,2,*, JIE Yu-Cheng1,2, ZHONG Ying-Li1,3,JING Li-Heng1
摘要:
根据苎麻转录组测序中的ACS基因片段, 利用RT-PCR结合RACE技术从湘苎3号中克隆了该基因的全长cDNA序列, 命名为BnACS1, 在GenBank中的登录号为JQ970520。该基因的cDNA序列全长为1 674 bp, 其开放阅读框长1 470 bp, 编码489个氨基酸多肽, 预测其分子量和等电点分别为54.55 kD和6.37, 与苹果(AB034993)、枇杷(GQ370520)、苦瓜(AF248734)、牡丹(DQ337250)、烟草(AY426755)和胡杨(AB033502) ACS基因核苷酸序列的相似性分别为74%、74%、72%、71%、70%和70%, 氨基酸序列的相似性分别为75%、74%、71%、71%、70%和74%。半定量RT-PCR分析表明, BnACS1基因在根、茎、茎尖、叶片、雌花和雄花中均有表达, 其中在根和雄花中表达较高, 在茎中表达最低。荧光定量PCR分析表明, BnACS1受ABA和干旱的诱导表达上调, 不受高盐诱导表达。
[1]Hidenori T, Takahiro I, Tetsuhito S, Aiko K, Takamitsu K, Yasunori I. Isolation and characterization of the ACC synthase genes from lettuce (Lactuca sativa L.) and the involvement in low pH-induced root hair initiation. Plant Cell Physiol, 2003, 44: 62–69[2]Yuri T, José R B. Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple (Ananas comosus L. Merr.). J Exp Bot, 2006, 57: 3953–3960[3]Salman M A, Levi A, Wolf S, Trebitsh T. ACC synthase genes are polymorphic in watermelon (Citrullus spp.) and differentially expressed in flowers and in response to auxin and gibberellin. Plant Cell Physiol, 2008, 49: 740–750[4]Huang F C, Do Y Y, Huang P L. Genomic organization of a diverse ACC synthase gene family in banana and expression characteristics of the gene member involved in ripening of banana fruits. Agric Food Chem, 2006, 54: 3859–3868[5]Akira N, Shinjiro S, Yasutaka K, Akitsugu I. Expression and internal feedback regulation of ACC synthase and ACC oxidase genes in ripening tomato fruit. Plant Cell Physiol, 1997, 38: 1103–1110[6]Masaya K, Yoshitaka H, Hiroshi H, Yoshinori I, Masamichi Y. Wound-induced ethylene synthesis and expression and formation of 1-aminocyclopropane-1-carboxylate (ACC) synthase, ACC oxidase, phenylalanine ammonia-lyase and peroxidase in wounded mesocarp tissue of Cucurbita maxima. Plant Cell Physiol, 2000, 41: 440–447[7]Peck S C, Kende H. Differential regulation of genes encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase in etiolated pea seedlings: effects of indole-3-acetic acid, wounding and ethylene. Plant Mol Biol, 1998, 38: 977–982[8]Li N, Parsons B L, Liu D R, Mattoo A K. Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Mol Biol, 1992, 18: 477–487[9]Wang N N, Shih M C, Li N. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J Exp Bot, 2005, 56: 909–920[10]Wi S J, Park K Y. Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants. Mol Cells, 2002, 13: 209–220[11]Young T E, Meeley R B, Gallie D R. ACC synthase expression regulates leaf performance and drought tolerance in maize. Plant J, 2004, 40: 813–825[12]Lin Y-C(林英超), Yang L(杨蕾), Zhao X-J(赵晓菊), Tang Z-H(唐中华). Effects of increased endogenous ethylene on plant salt tolerance in Arabidopsis seedlings under saline condition. Bull Bot Res (植物研究), 2010, 30(6): 703–707 (in Chinese with English abstract)[13]Ye Y-P(叶燕萍), Li Y-R(李杨瑞), Luo T(罗霆), Pang G-Y(庞国雁), Yang L-T(杨丽涛). Effects of seed-cane soaking with ethephin on the drought resistance in sugarcane. Chin Agric Sci Bull (中国农学通报), 2005, 21(6): 387–389(in Chinese with English abstract)[14]Rowell P L, Miller D G. Induction of male sterility in wheat with 2-chloroethylphosphonic acid (Ethrel). Crop Sci, 1971, 11: 629–631[15]Hughes W G, Bennett M D, Bodden J J, Galanopoulou S. Effects of time of application of ethrel on male sterility and ear emergence in wheat Trticum aestivum. Ann ApplBiol, 1974, 76: 243–252[16]Iwahori S, Lyons J M, Smith O E. Sex expression in cucumberplants as affected by chloroethylphosphonic acid, ethylene and growth regulators. Plant Physiol, 1970, 46: 412–415[17]Lin Z F, Zhong S, Don G. Recent advances in ethylene research. J Exp Bot, 2009, 60: 3311–3336[18]Luo Y-B(罗云波), Sheng J-P(生吉萍), Shen L(申琳). Control of tomato ethylene biosynthesis by the sue of antisense accase gene. J Agric Biotechnol (农业生物技术学报), 1995, 3(2): 38–44 (in Chinese with English abstract)[19]Wi S J, Park K Y. Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants. Mol Cells, 2002, 13: 209–220[20]Ayelet S M, Amnon L, Shmuel W, Tova T. ACC synthasegenes are polymorphic in watermelon (Citrullus spp.) and differentiallyexpressed in flowers and in response to auxin and gibberellin. Plant Cell Physiol, 2008, 49: 740–750[21]Shi H-Y(石海燕), Zhang Y-X(张玉星). Advances in the study of the cloning and regulation of ACC ynthase genes in higher plants. Chin Agric Sci Bull (中国农学通报), 2012, 28(9): 160–162 (in Chinese with English abstract)[22]Immaculada L T, Cornelius S B, Donald G. Regulation of ethylene biosynthesis in response to pollination in tomato flowers. Plant Physiol, 2000, 123: 971–978[23]Peng H P, Lin T Y, Wang N N, Shih M C. Differential expressionof genes encoding 1-aminocyclopropane-1-carboxylate synthase inArabidopsis during hypoxia. Plant Mol Biol, 2005, 58: 15–25[24]Filip V, Willem H V, Jan S, Lucas J L, Frans J H, Dominique V D S. Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol, 2003, 133: 517–527[25]Thain S C, Vandenbussche F, Laarhoven L J, Dowson-Day M J, Wang Z Y, Tobin E M, Harren F J, Millar A J, Van D S D. Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiol, 2004, 136: 3751–3761[26]Wang A-Q(王爱勤), Yang L-T(杨丽涛), Wang Z-Z(王自章), Wei Y-T(韦宇拓), He L-F(何龙飞), Li Y-R(李杨瑞). Expression of three members of ACC synthase gene family in sugarcane induced by hormones and environmental stress. Acta Agron Sin (作物学报), 2006, 32(5): 734–737 (in Chinese with English abstract) |
[1] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[2] | 李富, 王延周, 严理, 朱四元, 刘头明. 苎麻茎皮环状RNA表达谱分析[J]. 作物学报, 2021, 47(6): 1020-1030. |
[3] | 付虹雨, 崔国贤, 李绪孟, 佘玮, 崔丹丹, 赵亮, 苏小惠, 王继龙, 曹晓兰, 刘婕仪, 刘皖慧, 王昕惠. 基于无人机遥感图像的苎麻产量估测研究[J]. 作物学报, 2020, 46(9): 1448-1455. |
[4] | 宋松泉,刘军,徐恒恒,张琪,黄荟,伍贤进. 乙烯的生物合成与信号及其对种子萌发和休眠的调控[J]. 作物学报, 2019, 45(7): 969-981. |
[5] | 余建,刘长英,赵爱春,王传宏,蔡雨翔,余茂德*. 桑树1-氨基环丙烷-1-羧酸氧化酶基因(MnACO)启动子功能分析[J]. 作物学报, 2017, 43(06): 839-848. |
[6] | 李帅,赵秋棱,彭阳,徐熠,李加纳,倪郁*. SA、MeJA和ACC处理对甘蓝型油菜叶角质层蜡质组分、结构及渗透性的影响[J]. 作物学报, 2016, 42(12): 1827-1833. |
[7] | 叶德练,王玉斌,周琳,李建民,段留生,张明才,李召虎. 乙烯利和氮肥对夏玉米氮素吸收与利用及产量的调控效应[J]. 作物学报, 2015, 41(11): 1701-1710. |
[8] | 唐映红, 陈建荣, 刘芳, 袁有美, 郭清泉, 昌洪涛. 苎麻肉桂酰辅酶A还原酶基因cDNA序列的克隆与分析[J]. 作物学报, 2015, 41(09): 1324-1332. |
[9] | 刘昱翔,陈建荣,彭彦,黄妤,赵燕,黄丽华,郭清泉,张学文. 两种苎麻纤维素合酶基因cDNA序列的克隆及表达[J]. 作物学报, 2014, 40(11): 1925-1935. |
[10] | 曹红利,岳川,周艳华,王璐,郝心愿,杨亚军*,王新超*. 茶树bZIP转录因子基因CsbZIP1的克隆与表达定位[J]. 作物学报, 2014, 40(09): 1702-1709. |
[11] | 刘长英,吕蕊花,朱攀攀,范伟,李军,王晓红,李镇刚,王茜龄,赵爱春,鲁成,余茂德. 桑树EIN2基因的分离与表达[J]. 作物学报, 2014, 40(07): 1205-1212. |
[12] | 靳义荣, 白岩, 宋毓峰, 张良, 董连红, 刘朝科, 冯祥国, 胡晓明, 王倩, 刘好宝. 林烟草钾离子通道基因NKT6的克隆与表达定位分析[J]. 作物学报, 2013, 39(09): 1602-1611. |
[13] | 刘杨,温晓霞,顾丹丹,郭强,曾爱,李长江,廖允成. 多胺对冬小麦籽粒灌浆的影响及其生理机制[J]. 作物学报, 2013, 39(04): 712-719. |
[14] | 邹自征,陈建华,栾明宝,郭劲霞,王超,王晓飞,许英,孙志民. 应用RSAP、SRAP和SSR分析苎麻种质亲缘关系[J]. 作物学报, 2012, 38(05): 840-847. |
[15] | 周精华, 邢虎成, 揭雨成, 钟英丽, 朱守晶, 蒋杰, 王亮. 苎麻Δ1-吡咯啉-5-羧酸合成酶(P5CS)基因的克隆和表达分析[J]. 作物学报, 2012, 38(03): 549-555. |
|