欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1702-1709.doi: 10.3724/SP.J.1006.2014.01702

• 研究简报 • 上一篇    

茶树bZIP转录因子基因CsbZIP1的克隆与表达定位

曹红利,岳川,周艳华,王璐,郝心愿,杨亚军*,王新超*   

  1. 中国农业科学院茶叶研究所 / 国家茶树改良中心 / 农业部茶树生物学与资源利用重点实验室, 浙江杭州310008
  • 收稿日期:2014-01-08 修回日期:2014-04-16 出版日期:2014-09-12 网络出版日期:2014-05-16
  • 通讯作者: 王新超, E-mail: xcw75@tricaas.com, Tel: 0571-86653162; 杨亚军, E-mail: yjyang@tricaas.com, Tel: 0571-86650226
  • 基金资助:

    本研究由国家自然科学基金项目(31170650), 浙江省自然科学基金重点项目(Z3100473), 浙江省农业新品种选育重大专项(2012C2905-3)和国家现代农业产业技术体系建设专项(CARS-23)资助。

Molecular Cloning and Expression of a bZIP Transcription Factor Gene CsbZIP1 in Tea Plant (Camellia sinensis)

CAO Hong-Li,YUE Chuan,ZHOU Yan-Hua,WANG Lu,HAO Xin-Yuan,YANG Ya-Jun*,WANG Xin-Chao*   

  1. Tea Research Institute, Chinese Academy of Agricultural Sciences / National Center for Tea Improvement / Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China?
  • Received:2014-01-08 Revised:2014-04-16 Published:2014-09-12 Published online:2014-05-16
  • Contact: 王新超, E-mail: xcw75@tricaas.com, Tel: 0571-86653162; 杨亚军, E-mail: yjyang@tricaas.com, Tel: 0571-86650226

摘要:

碱性亮氨酸拉链蛋白(bZIP)作为真核生物中分布最广、最保守的一类转录因子,参与多种生物学过程,尤其在植物抵御各种逆境胁迫中有重要作用。采用RACE和RT-PCR技术克隆到茶树bZIP转录因子基因全长cDNA序列,命名为CsbZIP1(GenBank登录号为JX050148.1)。该基因cDNA全长1515 bp,包含813 bp的完整开放阅读框(ORF),编码270个氨基酸,预测分子量29.484 kD;含有bZIP家族典型的BRLZ结构域碱性结构域和亮氨酸拉链,属于B-zip1家族;系统发育树分析显示CsbZIP1属于bZIP转录因子F亚家族;亚细胞定位结果表明CsbZIP1主要定位于细胞核;qRT-PCR分析表明,4℃低温和NaCl盐胁迫处理均能诱导CsbZIP1的表达,表达量变化趋势都是随着胁迫时间先逐渐升高,到24 h时降低,ABA胁迫处理24 h抑制CsbZIP1的表达。推测CsbZIP1与茶树低温、盐等逆境胁迫密切相关。

关键词: 茶树, bZIP转录因子, CsbZIP1, 亚细胞定位, 克隆表达

Abstract:

 

The basic leucine zipper proteins (bZIP) are one of the most extensive and conserved transcriptional factors families in eukaryotes, and plant bZIPs play important roles in many biological processes, especialy for resisting abiotic stresses. In this study, a bZIP full-length cDNA sequence was cloned using RACE and reverse transcription-PCR(RT-PCR) techniques from tea plant (Camellia sinensis). The obtained full-length cDNA was named CsbZIP1 with GenBank accession number JX050148.1. It is 1515 bp in length, containing a 813 bp open reading frame (ORF), encoding 270 amino acid residues with 29.484 kD molecular weight, and containing a typical BRLZ motif (basic region domain and leucine zipper domain) of B-zip1 family. The phylogenetic tree analysis revealed that CsbZIP1 belongs to F subfamily of bZIP. The subcellular location showed that CsbZIP1 protein is located in nucleus. The qRT-PCR analysis indicated that the expression level of CsbZIP1 was up-regulated by cold (4℃) and salt (NaCl) treatments, and both expression amounts increased at first, then declined after 24 hours. However, the expression pattern was down-regulated by ABA treatment within 24 hours. These results demonstrated that CsbZIP1 could be associated with cold and salt stresses in tea plant.

Key words: Tea plant (Camellia sinensis), bZIP transcription factor, CsbZIP1, Subcellular localization, Cloning and Expression

[1]Xu Z S, Chen M, Li L C, Ma Y Z. Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol, 2011, 53: 570–585



[2]Landschulz W, Johnson P, McKnight S. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science, 1988, 240: 1759–1764



[3]Kim S, Kang J Y, Cho D I, Park J H, Kim S Y. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J, 2004, 40: 75–87



[4]Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis. Trends Plant Sci, 2002, 7: 106–111



[5]Nijhawan A, Jain M, Tyagi A K, Khurana J P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol, 2008, 146: 333–350



[6]Gao S Q, Chen M, Xu Z S, Zhao C P, Li L, Xu H J, Tang Y M, Zhao X, Ma Y Z. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol, 2011, 75: 537–553



[7]Rodriguez-Uribe L, O'Connell M A. A root-specific bZIP transcription factor is responsive to water deficit stress in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris). J Exp Bot, 2006, 57: 1391–1398



[8]Liao Y, Zou H F, Wei W, Hao Y J, Tian A G, Huang J, Liu Y F, Zhang J S, Chen S Y. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta, 2008, 228: 225–240



[9]Liu C, Wu Y, Wang X. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta, 2012, 235: 1157–1169



[10]Kang J Y. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell Online, 2002, 14: 343–357



[11]Ying S, Zhang D F, Fu J, Shi Y S, Song Y C, Wang T Y, Li Y. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta, 2012, 235: 253–266



[12]Hsieh T H, Li C W, Su R C, Cheng C P, Sanjaya, Tsai Y C, Chan M T. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta, 2010, 231: 1459–1473



[13]Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang S Y. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J Integr Plant Biol, 2011, 53: 212–231



[14]Lee S C, Choi H W, Hwang I S, Choi du S, Hwang B K. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta, 2006, 224: 1209–1225



[15]周精华, 揭雨成, 邢虎成, 钟英丽, 余伟林. 苎麻BnbZIP1转录因子基因的克隆与表达特征分析. 中国农业科学, 2013, 46: 1314–1322



Zhou J H, Jie Y C, Xing H C, Zhong L Y, Yu W L. Cloning and characterization of the BnbZIP1 transcription factor gene from ramie (Boehmeria nivea L.). Sci Agric Sin, 2013, 46: 1314–1322 (in Chinese with English abstract)



[16]Wang Y, Gao C, Liang Y, Wang C, Yang C, Liu G. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol, 2010, 167: 222–230



[17]Chen H, Chen W, Zhou J, He H, Chen L, Chen H, Deng X W. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci, 2012, 193–194: 8–17



[18]Wang X C, Zhao Q Y, Ma C L, Zhang Z H, Cao H L, Kong Y M, Yue C, Hao X Y, Chen L, Ma J Q, Jin J Q, Li X, Yang Y J. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics, 2013, 14: 415



[19]Paul A, Lal L, Ahuja P S, Kumar S. Alpha-tubulin (CsTUA) up-regulated during winter dormancy is a low temperature inducible gene in tea [Camellia sinensis (L.) O. Kuntze]. Mol Biol Rep, 2012, 39: 3485–3490



[20]Wang Y, Jiang C J, Li Y Y, Wei C L, Deng W W. 2012. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep, 2012, 31: 27–34



[21]郝姗. 茶树不同逆境条件下QRT-PCR适宜内参基因的筛选. 南京农业大学硕士学位论文, 江苏南京, 2012. pp 38–65



Hao S. Selection of Appropriate Reference Genes for Expression Studies in Camellia sinensis by Real-time Polymerase Chain Reaction. MS Thesis of Nanjing Agricultural University, Nanjing, China, 2012. pp 38–65 (in Chinese with English abstract)



[22]曹红利, 岳川, 郝心愿, 王新超, 杨亚军. 茶树胆碱单加氧酶CsCMO的克隆及甜菜碱合成关键基因的表达分析. 中国农业科学, 2013, 46: 3087–3096



Cao H L, Yue C, Hao X Y, Wang X C, Yang Y J. Cloning of choline monooxygenase (CMO) gene and expression analysis of the key glycine betaine biosynthesis-related genes in tea plant (Camellia sinensis). Sci Agric Sin, 2013, 46: 3087–3096 (in Chinese with English abstract)



[23]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402–408



[24]Kumimoto R W, Siriwardana C L, Gayler K K, Risinger J R, Siefers N, Holt B F. Nuclear factor Y transcription factors have both opposing and additive roles in ABA-mediated seed germination. PLoS One, 2013, 8: e59481



[25]Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA, 2000, 97: 11632–11637



[26]Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 2006, 57: 781–803



[27]Wang B, Zheng J, Liu Y, Wang J, Wang G. Cloning and characterization of the stress-induced bZIP gene ZmbZIP60 from maize. Mol Biol Rep, 2012, 39: 6319–6327



[28]Zou M, Guan Y, Ren H, Zhang F, Chen F. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol, 2008, 66: 675–683



[29]Orellana S, Yanez M, Espinoza A, Verdugo I, Gonzalez E, Ruiz-Lara S, Casaretto J A. The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ, 2010, 33: 2191–2208



[30]Schlogl P S, Nogueira F T, Drummond R, Felix J M, De Rosa V E, Jr.Vicentini R, Leite A, Ulian E C, Menossi M. Identification of new ABA- and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database. Plant Cell Rep, 2008, 27: 335–345



[31]Cheng C, Yun K Y, Ressom H W, Mohanty B, Bajic V B, Jia Y, Yun S J, de los Reyes B G. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics, 2007, 8: 175

[1] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[2] 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321.
[3] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[4] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[5] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[6] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[7] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
[8] 张玉杰,张园园,张华宁,秦宁,李国良,郭秀林. 小麦热激转录因子基因TaHsfA2e特性及耐热性功能初探[J]. 作物学报, 2018, 44(12): 1818-1828.
[9] 彭章, 童华荣, 梁国鲁, 石艺琦, 袁连玉. 茶树叶片和胚根原生质体的分离及PEG诱导融合[J]. 作物学报, 2018, 44(03): 463-470.
[10] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244.
[11] 赵立娜,刘子会,段硕楠,张园园,李国良,郭秀林. 小麦热激转录因子基因TaHsfB2d的克隆和特性及其对耐热性的调控[J]. 作物学报, 2018, 44(01): 53-62.
[12] 郝心愿,岳川,唐湖,钱文俊,王玉春,王璐,王新超,杨亚军. 茶树β-淀粉酶基因CsBAM3的克隆及其响应低温的表达模式[J]. 作物学报, 2017, 43(10): 1417-1425.
[13] 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020.
[14] 赵立娜.段硕楠.张华宁.郭秀林.李国良. 玉米热激转录因子基因ZmHsf25的克隆、特性与耐热性功能分析[J]. 作物学报, 2017, 43(07): 1021-1029.
[15] 袁连玉,陈应娟,魏旭,童华荣*. 茶树金属耐受蛋白基因CsMTP11的克隆及功能分析[J]. 作物学报, 2017, 43(05): 708-717.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!