欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (05): 708-717.doi: 10.3724/SP.J.1006.2017.00708

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

茶树金属耐受蛋白基因CsMTP11的克隆及功能分析

袁连玉,陈应娟,魏旭,童华荣*   

  1. 西南大学食品科学学院, 重庆 400715
  • 收稿日期:2016-08-23 修回日期:2017-01-21 出版日期:2017-05-12 网络出版日期:2017-02-17
  • 通讯作者: 童华荣, E-mail: huart@swu.edu.cn, Tel: 023-68251298
  • 基金资助:

    本研究由国家自然科学基金项目(31400583), 重庆市基础与前沿研究计划一般项目(cstc2014jcyjA80011)和中央高校基本业务费专项(XDJK2014C070)资助。

Cloning and Function Analysis of Metal Tolerance Gene (CsMTP11) in Tea Plant (Camellia sinensis L. O. Kuntze)

YUAN Lian-Yu,CHEN Ying-Juan,WEI Xu,TONG Hua-Rong*   

  1. College of Food Science, Southwest University, Chongqing 400715, China
  • Received:2016-08-23 Revised:2017-01-21 Published:2017-05-12 Published online:2017-02-17
  • Contact: Dong Huarong, E-mail: huart@swu.edu.cn, Tel: 023-68251298
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (31400583), the Natural Science Foundation Project of CQ CSTC (cstc2014jcyjA80011), and Fundamental Research Funds for the Central Universities (XDJK2014C070).

摘要:

金属耐受蛋白MTP (metal tolerance protein)是阳离子转运蛋白(CDF)家族的重要成员, 在植物重金属转运过程中发挥重要调控作用。本研究以中茶108茶树为试验材料, 通过RT-PCR和RACE方法克隆到茶树重金属耐受蛋白基因CsMTP11 (GenBank登录号为KX450265), 其全长cDNA为1197 bp, 编码398个氨基酸残基, 其编码蛋白分子量为44.85 kD, 等电点为5.34。在线软件分析表明, CsMTP11蛋白具有5个跨膜结构域, 且含有CDF家族的其他保守结构域。系统进化树分析结果表明, 茶树CsMTP11与葡萄VvMTP11进化同源性最近, 其氨基酸序列相似度高达90%。基因表达模式分析表明, CsMTP11基因在茶树老叶中的表达量最高, 根中的表达量最低, 另外, CsMTP11基因受重金属Mn和Co离子胁迫诱导表达。CsMTP11-YFP融合蛋白在拟南芥原生质体共定位试验表明, CsMTP11-YFP融合蛋白定位于质膜。CsMTP11在酿酒酵母及其突变株中的异源表达可以提高其对重金属Mn和Co离子的耐受性。综上所述, 茶树CsMTP11属于Mn-CDF亚家族, 可能参与茶树对重金属锰和钴的转运过程。

关键词: 茶树, 重金属耐受蛋白, 基因克隆,

Abstract:

As a member of cation diffusion facilitator family, metal tolerance protein (MTP) is involved in the regulation of heavy metal stress process in plant. Here, we cloned a MTP gene, CsMTP11 (GenBank accession number: KX450265) from Zhongcha 108 tea plant. The full-length cDNA of CsMTP11 is 1197 bp, and the gene encodes a novel protein of 398 amino acids, which shares significant sequence similarity with VvMTP11(90%). The molecular weight and theoretical pI of this protein are 44.85 kD and 5.34, respectively. The conserved domain analysis indicated that CsMTP11 contained five transmembrane domains and the conserved CDF domain. The phylogenetic tree indicated that CsMTP11 had sequence conservation among different species. The transcriptional level of CsMTP11 in old leaf was higher than that in root. Futher more, the heavy metal Mn and Co stresses induced the expression of CsMTP11. The subcellular localization assay using CsMTP11-YFP fusion gene expressed in the Arabidopsis protoplast showed that CsMTP11 was localized in the plasma membranes. CsMTP11 heterologous expression in wild-type yeast BY4741 and the mutants showed that it was able to increase tolerance to Mn and Co. Taken together , our results indicated that CsMTP11 is a member of the Mn-CDF family, and it may be involved in the regulation of heavy metal stress process in tea plant.

Key words: Camellia sinensis, Heavy metal tolerance, Gene clone, Mn

[1] Szymczycha-Madeja A, Welna M, Pohl P. Elemental analysis of teas and their infusions by spectrometric methods. Trac-Trends Anal Chem, 2012, 35: 165–181 [2] Brzezicha-Cirocka J, Grembecka M, Szefer P. Monitoring of essential and heavy metals in green tea from different geographical origins. Environ Monitor Assess, 2016, 188: 1–11 [3] Santos D, Batoreu C, Mateus L, Dos Santos A P M, Aschner M. Manganese in human parenteral nutrition: Considerations for toxicity and biomonitoring. Neurotoxicology, 2014, 43: 36–45 [4] Sloot W N, Gramsbergen J B P. Axonal-transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res, 1994, 657: 124–132 [5] 雷雨, 苏晓倩, 王芳, 李珍, 萧力争. 茶树重金属胁迫研究概况. 中国食物与营养, 2010, (5): 19–23 Lei Y, Su X Q, Wang F, Li Z, Xiao L Z. Research situation of heavy metal stress in tea plant. Food and Nutrition in China, 2010, (5): 19–23 [6] 常硕其, 彭克勤, 张亚莲, 刘红艳, 付海平. 加锰处理对茶树锰含量及生理变化的影响研究. 茶叶科学, 2008, (5): 331–338 Chang S Q, Peng K Q, Zhang Y L, Liu H Yan, Fu H P. Effect of Mn addition treatment on accumulation of Mn and physiological active substance in tea plants. Journal of Tea Science, 2008, (5): 331–338 [7] Ozdemir Y, Gucer S. Speciation of manganese in tea leaves and tea infusions. Anal Lett, 1998, 31: 679–689 [8] Yemane Michael, Chandravanshi B S, Wondimu Taddese. Levels of essential and non-essential metals in leaves of the tea plant (Camellia sinensis L.) and soil of Wushwush farms, Ethiopia. Food Chem, 2008, 107: 1236–1243 [9] Street R, Szakova J, Drabek O, Mladkova L. The status of micronutrients (Cu, Fe, Mn, Zn) in tea and tea infusions in selected samples imported to the Czech Republic. Czech J Food Sci, 2006, 24: 62–71 [10] 姚元涛, 张丽霞, 宋鲁彬, 田丽丽. 茶树锰素营养研究现状与展望. 中国茶叶, 2009, (3): 10–11 Yao Y T, Zhang L X, Song L B, Tian L L. Research status andprospect of manganese nutrition in tea plant. China Tea, 2009, (3): 10–11 [11] Memon A R, Chino M, Hidaka H, Hara K, Yatazawa M. Manganese toxicity in field-grown tea plants and the micro-distribution of manganese in the leaf tissues as revealed by electron-probe X-ray micrography. Soil Sci Plant Nutr, 1981, 27: 317–328 [12] 姚元涛, 陶吉寒, 宋鲁彬, 田丽丽, 刘腾飞, 贾厚振. 钙、锰、铝及与硼的协同胁迫对茶树的毒害效应. 植物生理学报, 2015, 11: 1867–1872 Yao Y T, Yao J H, Song L B, Tian L L, Liu T F, Jia H Z. Poison effects of synergistic stress of calcium, manganese, aluminum and boron on tea plant. Plant Physiol J, 2015, 11: 1867–1872 [13] Yuan L Y, Yang S G, Liu B X, Zhang M, Wu K Q. Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep, 2012, 31: 67–79 [14] Lorraine W E, Pittman Jon K. Dissecting pathways involved in manganese homeostasis and stress in higher plant cells. In: Hell R, Mendel R R, Eds. Cell Biology of Metals and Nutrients. Berlin, Germany: Springer-Verlag Berlin, Heidelberger Platz 3, D-14197, 2010. 95–117 [15] Paulsen I T, Saier M H. A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol, 1997, 156: 99–103 [16] Wei Y N, Fu D. Binding and transport of metal ions at the dimer interface of the Escherichia coli metal transporter YiiP. J Biol Chem, 2006, 281: 23492–23502 [17] Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M. Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics, 2007, 8: 107 [18] Becher M, Talke I N, Krall L, Kramer U. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J, 2004, 37: 251–268 [19] Cho M, Chardonnens A N, Dietz K J. Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana: a leaf slice test. New Phytol, 2003, 158: 287–293 [20] Migocka M, Papierniak Anna, Maciaszczyk-Dziubinska E, Pozdzik P, Posyniak E, Garbiec A, Filleur S. Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana. J Exp Bot, 2014, 65: 5367–5384 [21] Chen Z H, Fujii Y M, Yamaji N, Masuda S, Takemoto Y, Kamiya T, Yusuyin Y, Iwasaki K, Kato S I, Maeshima M, Ma J F, Ueno D. Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. J Exp Bot, 2013, 64: 4375–4387 [22] Delhaize E, Gruber B D, Pittman J K, White R G, Leung H, Miao Y S, Jiang L W, Ryan P R, Richardson A E. A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J, 2007, 51: 198–210 [23] Tanaka N, Fujiwara T, Tomioka R, Kraemer U, Kawachi M, Maeshima M. Characterization of the histidine-rich loop of arabidopsis vacuolar membrane zinc transporter AtMTP1 as a sensor of zinc level in the cytosol. Plant Cell Physiol, 2015, 56: 510–519 [24] Arrivault S, Senger T, Kramer U. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J, 2006, 46: 861–879 [25] Gaitan-Solis E, Taylor N J, Siritunga D, Stevens W, Schachtman D P. Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Front Plant Sci, 2015, 6: 492 [26] Delhaize E, Gruber B D, Pittman J K, White R G, Leung H, Miao Y S, Jiang L W, Ryan P R, Richardson A E. A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J, 2007, 51: 198–210 [27] Delhaize E, Kataoka T, Hebb D M, White R G, Ryan P R. Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell, 2003, 15: 1131–1142 [28] Nies D H, Silver S. Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol, 1995, 14: 186–199 [29] Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N, Sasaki R, Mori K, Iwanaga T, Nagao M. Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J Biol Chem, 2002, 277: 19049–19055 [30] Singh S, Parihar P, Singh R, Singh V. P, Prasad S. M. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and lonomics. Front Plant Sci, 2016, 6: 1143-1178 [31] Kobae Y, Uemura T, Sato M H, Ohnishi M, Mimura T, Nakagawa T, Maeshima M. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol, 2004, 45: 1749–1758 [32] Desbrosses-Fonrouge A G, Voigt K, Schroder A, Arrivault S, Thomine S, Kramer U. Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. Febs Lett, 2005, 579: 4165–4174

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[4] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[5] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[6] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[7] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[8] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[9] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[10] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[11] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[12] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
[13] 冯韬,官春云. 甘蓝型油菜芸薹素唑耐受因子(BnaBZR1/BnaBES1)全长CDS克隆与生物信息学分析[J]. 作物学报, 2018, 44(12): 1793-1801.
[14] 马晨雨,詹为民,李文亮,张梦迪,席章营. 玉米ZmNAOD基因的克隆与功能分析[J]. 作物学报, 2018, 44(10): 1433-1441.
[15] 刘朝显, 王久光, 梅秀鹏, 余婷婷, 王国强, 周练, 蔡一林. 玉米胚乳母本印记基因ZmVIL1的克隆及印记特性分析[J]. 作物学报, 2018, 44(03): 376-384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!