作物学报 ›› 2017, Vol. 43 ›› Issue (05): 718-729.doi: 10.3724/SP.J.1006.2017.00718
段绍光,金黎平*,李广存,卞春松,徐建飞,胡军,屈冬玉
DUAN Shao-Guang,JIN Li-Ping*,LI Guang-Cun,BIAN Chun-Song,XU Jian-Fei,HU Jun,QU Dong-Yu
摘要:
基于16个田间表型性状对454份马铃薯材料进行UPGMA聚类分析表明,在欧氏距离14.66处所有参试材料可以被聚成2个类群A1和A。在欧氏距离12.74处类群A1又可以被分为2个亚群A11和A12。在欧氏距离11.73处全部参试材料可以被划成9个类群,包括4个小类(A、B、C和H)和五个大类(D、E、F、G和I),其中类群I所包括的材料占总数的57.5%,该结果可较准确地揭示马铃薯不同材料之间的形态差异,区分生态类型不同和遗传差异明显的亲本。利用SSR标记对559份国内外不同来源的马铃薯栽培品种进行遗传多样性分析发现,用36对多态性引物共可检测出134个多态性位点,每对引物的等位变异为1~7个,平均为3.72个,引物多态性信息量(PIC)为0.1545~0.7743,平均为0.5783,说明品种间较丰富的遗传多样性。同时,NJ系统进化树分析表明,559份马铃薯栽培种材料可分为3个大群。类群I为一个混合群,各地区品种均有分布,包括133份马铃薯材料,占总数的23.8%;类群II中欧洲、北美及中国东北和西北地区的材料所占比重较大,数量为187,占33.5%;类群III中北美、南美以及中国东北和西南地区马铃薯材料所占比重较大,包含239份材料,占42.8%。表型性状聚类与SSR分子标记聚类结果相似,均与地理位置有很大相关性,应结合共同用于评价马铃薯品种遗传多样性。
[1]Hawkes J G, Hjerting J P. The potatoes of Bolivia: Their breeding value and evolutionary relationships. Oxford: Oxford University Press, 1989 [2]Bamberg J, del Rio A. Accumulation of Genetic Diversity in the US Potato Genebank. Am J Potato Res, 2016. 93: 430–435 [3]Spooner D M. Species delimitations in plants: lessons learned from potato taxonomy by a practicing taxonomist. View Issue TOC, 2016, 54: 191–203 [4]Machida-Hirano R. Diversity of potato genetic resources. Breed Sci, 2015, 65: 26–40 [5]孙慧生, 陈伊里, 叶超龄. 种质资源与品种选育. 见: 黑龙江省农业科学院马铃薯研究所主编. 中国马铃薯栽培学(第4章). 北京: 中国农业出版社, 1990. pp 78–127 Sun H S, Chen Y L, Ye C L. Germplasm resources and breeding. In: Potato Research Institute of Heilongjiang Academy of Agricultural Sciences, eds. Chinese Potato Cultivation (Chapter IV). Beijing: China Agriculture Press, 1990. pp 78–127 (In Chinese) [6]Ullstrup A J. Evolution and dynamics of corn diseases and insect problems since the advent of hybrid corn. In: Walden D B, eds. Maize Breeding and Genetics. New York: Wiley-Interscience, 1978. pp 283–297 [7]Petra O, Catherine C B, Ralf S P. A genetic analysis of quantitative resistance to late blight in potato: Towards marker-assisted selection. Mol Breed, 1999, 5: 399–415 [8]Hamilton J P, Hansey C N, Whitty B R, Stoffel K, Massa1 A N, van Deynze A, De Jong W S, Douches D S, Buell C R. Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genom, 2011, 12: 302 [9]段艳凤. 中国马铃薯主要育成品种SSR指纹图谱构建与遗传关系分析. 中国农业科学院硕士学位论文, 北京, 2009 Duan Y F. Construction of Fingerprinting and Analysis of Genetic Relationship with SSR Markers for Main Potato Cultivars (Solanum tuberosum L.) in China. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2009 (in Chinese with English abstract) [10]Haan S, Nú?ez J, Bonierbale M, Ghislain M, van der Maesen J. A simple sequence repeat (SSR)marker comparison of a large In- and Ex-situ potato landrace cultivar collection from Peru reaffirms the complementary nature of both conservation strategies. Diversity, 2013, 5: 505-521. [11]Sharmab V, Nandineni M R. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems. Mol Phylogenet Evol, 2014, 73: 10–17 [12]Herrera M R, Nú?ez J, Guzman F, Ghislain M, Spooner D M. A new potato genetic identity kit of 24 SSR markers for high throughput fingerprinting of large collections. In: VI International Solanaceae Conference, Madison, 2006 [13]徐 敏. 中国马铃薯审定品种系谱分析及遗传多样性研究. 中国农业科学院硕士学位论文, 北京, 2007 Xu M. Pedigree and Diversity of Approved Potato Cultivars (Solanum tuberosum L.) in China. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, 2007 (in Chinese with English abstract) [14]王胜军, 陆作嵋, 万建民. 采用表型和分子标记聚类研究杂交釉稻亲本的遗传多样性. 中国水稻科学, 2006, 20: 475–480 Wang S J, Lu Z M, Wan J M. Genetic diversity of parental lines in indica hybrid rice based on phenotypic characters and SSR cluster analysis. Chin J Rice Sci, 2006, 20: 475–480 (in Chinese with English abstract) [15]Jansky S H, Dawson J, Spooner D M. How do we address the disconnect between genetic and morphological diversity in germplasm collections? Am J Bot, 2015, 102: 1213–1215 [16]Ghislain M, Spooner D M, Rodriguez F, Villamon F, Nunez J, Vasquez C, Waugh R, Bonierbale M. Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theor Appl Genet, 2004, 108: 881–890 [17]Ghislain M, Rodríguez F, Villamón F, Nú?ez J, Waugh R, Bonierbale M. Establishment of microsatellite assays for potato genetic identification/International Potato Center (CIP) . In: Scientist and Farmer: Partners in Research for the 21st Century Program Report, Lima : International Potato Center, 2001. pp 98–129 [18]Pavek J, Corsini D. Utilization of potato genetic resources in variety development. Am J Potato Res, 2001, 78: 433–441 [19]Loiselle F, Tai G C C, Christie B R, Tarn T R. Relationship between inbreeding coefficient and clonal selection in a potato cultivar development program. Am J Potato Res, 1989, 66: 747–753 [20]Kim J H, Joung H, Kim H Y, Lim Y P. Estimation of genetic variation and relationship in potato (Solanum tuberosum L.) cultivars using AFLP markers. Am J Potato Res, 1998, 75: 107–112 [21]Love S L. Founding clones, major contributing ancestors, and exotic progenitors of prominent North American potato cultivars. Am J Potato Res, 1999, 76: 263–272 [22]Loiselle F, Tai G C C, Tarn T R, Christie B R. The use of multivariate analyses to elimiate redunant variables when evaluating potatoes for chip quality. Plant Breed, 1989, 103: 153–162 [23]Fu Y B, Peterson G W, Richards K W, Tarn T R, Percy J E. Genetic diversity of Canadian and exotic potato germplasm revealed by simple sequence repeat markers. Am J Potato Res, 2009, 86: 38–48 [24]Kumar R, Kang G S, Pandey S K, Gopal J. Genetic base and relatedness of Indian early maturing potato (Solanum tuberosum) selections. J Agric Sci, 2011, 149: 217–225 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332. |
[3] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[4] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[5] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[6] | 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919. |
[7] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[8] | 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694. |
[9] | 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379. |
[10] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[11] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[12] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[13] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[14] | 赵婧, 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟, 闫晓艳. 不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应[J]. 作物学报, 2021, 47(9): 1824-1833. |
[15] | 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274. |
|