作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1695-1701.doi: 10.3724/SP.J.1006.2014.01695
杨莉1,黄玉莲2,常萍3,阎俊4,张业伦1,夏先春1,田宇兵1,何中虎1,5,张勇1,*
ANG Li1,HUANG Yu-Lian2,CHANG Ping3,YAN Jun4,ZHANG Ye-Lun1,XIA Xian-Chun1,TIAN Yu-Bing1,HE Zhong-Hu1,5,ZHANG Yong1,*
摘要:
阿拉伯木聚糖是小麦中最重要的非淀粉多糖, 对营养和加工品质有重要影响。采用IciMapping软件, 对PH82-2/内乡188重组自交系群体(F2:6)的水溶性和总阿拉伯木聚糖含量进行QTL分析, 在1B、4B、5B、5D和6B染色体上定位5个控制总阿拉伯木聚糖含量的QTL, 分别解释5.6%~18.7%的表型变异; 在1A、1B、5B、6B和7A染色体上定位5个控制水溶性阿拉伯木聚糖含量的QTL, 分别解释4.3%~34.9%的表型变异。其中, 1B、5B和6B染色体上影响水溶性和总阿拉伯木聚糖含量的QTL位于同一标记区间。1BL/1RS易位对水溶性和总阿拉伯木聚糖含量有显著作用, 籽粒硬度对总阿拉伯木聚糖含量有显著作用。阿拉伯木聚糖含量, 特别是总阿拉伯木聚糖含量, 与快速黏度分析仪峰值黏度、稀澥值, 以及面条品质黏弹性、食味呈显著相关, 但相关系数受1BL/1RS易位和籽粒硬度影响。
[1]Saulnier L, Guillon F, Sado P, Rouau X. Plant cell wall polysaccharides in storage organs: xylans (food applications). In: Comprehensive Glycoscience: from Chemistry to Systems Biology, Vol. 2, Analysis of Glycans, Polysaccharide Functional Properties. Amsterdam: Elsevier, 2007. pp 653–689[2]Broekaert W F, Courtin C M, Verbeke K, Van De Wiele T, Verstraete W, Delcour J A. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr, 2011, 51: 178–194[3]Izydorczyk M S, Biliaderis C G. Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polymers, 1995, 28: 33–48[4]Jelaca S, Hlynka I. Effect of wheat-flour pentosans in dough, gluten, and bread. Cereal Chem, 1972, 49: 489–495[5]Vanhamel S, Cleemput G, Delcour J, Nys M, Darius P. Physicochemical and functional properties of rye nonstarch polysaccharides: IV. The effect of high molecular weight water-soluble pentosans on wheat-bread quality in a straight-dough procedure. Cereal Chem, 1993, 70: 306–306[6]Courtin C M, Delcour J A. Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci, 2002, 35: 225-243[7]Bettge A, Morris C F. Relationships among grain hardness, pentosan fractions, and end-use quality of wheat. Cereal Chem, 2000, 77: 241–247[8]张岐军, 钱森和, 张艳, 何中虎, 姚大年. 中国软质小麦品种戊聚糖含量的遗传变异及其与饼干加工品质的关系. 中国农业科学, 2005, 38: 1734–1738Zhang Q J, Qian S H, Zhang Y, He Z H, Yao D N. Variation of pentosans in Chinese soft wheat cultivars and correlations with cookie quality. Sci Agric Sin, 2005, 38: 1734–1738 (in Chinese with English abstract)[9]Kaldy M, Rubenthaler G, Kereliuk G, Berhow M, Vandercook C. Relationships of selected flour constituents to baking quality in soft white wheat. Cereal Chem, 1991, 68: 508–512[10]Li S, Morris C F, Bettge A D. Genotype and environment variation for arabinoxylans in hard winter and spring wheats of the U.S. Pacific Northwest. Cereal Chem, 2009, 86: 88–95[11]Gebruers K, Dornez E, Boros D, Dynkowska W, BedöZ, Rakszegi M, Delcour J A, Courtin C M. Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN diversity screen. J Agric Food Chem, 2008, 56: 9740–9749[12]Pritchard J R, Lawrence G J, Larroque O, Li Z, Laidlaw H K, Morell M K, Rahman S. A survey of β-glucan and arabinoxylan content in wheat. J Sci Food Agric, 2011, 91: 1298–1303[13]Saulnier L, Peneau N, Thibault J-F. Variability in grain extract viscosity and water-soluble arabinoxylan content in wheat. J Cereal Sci, 1995, 22: 259–264[14]Finnie S, Bettge A, Morris C F. Influence of cultivar and environment on water-soluble and water-insoluble arabinoxylans in soft wheat. Cereal Chem, 2006, 83: 617–623[15]Dornez E, Gebruers K, Joye I J, De Ketelaere B, Lenartz J, Massaux C, Bodson B, Delcour J A, Courtin C M. Effects of genotype, harvest year and genotype-by-harvest year interactions on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. J Cereal Sci, 2008, 47: 180–189[16]Bordes J, Ravel C, Le Gouis J, Lapierre A, Charmet G, Balfourier F. Use of a global wheat core collection for association analysis of flour and dough quality traits. J Cereal Sci, 2011, 54: 137–147[17]Charmet G, Masood-Quraishi U, Ravel C, Romeuf I, Balfourier F, Perretant M, Joseph J, Rakszegi M, Guillon F, Sado P. Genetics of dietary fibre in bread wheat. Euphytica, 2009, 170: 155–168[18]Groos C, Bervas E, Chanliaud E, Charmet G. Genetic analysis of bread-making quality scores in bread wheat using a recombinant inbred line population. Theor Appl Genet, 2007, 115: 313–323[19]Quraishi U M, Murat F, Abrouk M, Pont C, Confolent C, Oury F X, Ward J, Boros D, Gebruers K, Delcour J A. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genomics, 2011, 11: 71–83[20]Nguyen V L, Huynh B L, Wallwork H, Stangoulis J. Identification of quantitative trait loci for grain arabinoxylan concentration in bread wheat. Crop Sci, 2011, 51: 1143–1150[21]Gilmour A R, Cullis B R, Verbyla A P. Accounting for natural and extraneous variation in the analysis of field experiments. J Agric, Biol, Environ Stat, 1997, 2: 269–293[22]Kiszonas A M, Courtin C M, Morris C F. A critical assessment of the quantification of wheat grain arabinoxylans using a phloroglucinol colorimetric assay. Cereal Chem, 2012, 89: 143–150[23]Zhang Y, Quail K, Mugford D C, He Z. Milling quality and white salt noodle color of Chinese winter wheat cultivars. Cereal Chem, 2005, 82: 633–638[24]Zhang Y, Wu Y, Xiao Y, Yan J, Zhang Y, Zhang Y, Ma C, Xia X, He Z. QTL mapping for milling, gluten quality, and flour pasting properties in a recombinant inbred line population derived from a Chinese soft × hard wheat cross. Crop Pasture Sci, 2009, 60: 587–597[25]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114[26]Marone D, Laido G, Gadaleta A, Colasuonno P, Ficco D B, Giancaspro A, Giove S, Panio G, Russo M A, De Vita P. A high-density consensus map of A and B wheat genomes. Theor Appl Genet, 2012, 125: 1619–1638[27]Panozzo J, Mccormick K. The rapid viscoanalyser as a method of testing for noodle quality in a wheat breeding programme. J Cereal Sci, 1993, 17: 25–32[28]Courtin C M, Gelders G G, Delcour J A. Use of two endoxylanases with different substrate selectivity for understanding arabinoxylan functionality in wheat flour breadmaking. Cereal Chem, 2001, 78: 564–571 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[3] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[4] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[5] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[6] | 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401. |
[7] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[8] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[9] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[10] | 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404. |
[11] | 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461. |
[12] | 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422. |
[13] | 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370. |
[14] | 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347. |
[15] | 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162. |
|