欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1686-1694.doi: 10.3724/SP.J.1006.2014.01686

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮期对小麦茎秆木质素合成的影响及其抗倒伏生理机制

卢昆丽,尹燕枰,王振林*,李勇,彭佃亮,杨卫兵,崔正勇,杨东清,江文文   

  1. 作物生物学国家重点实验室 / 山东农业大学农学院,山东泰安 271018
  • 收稿日期:2013-11-25 修回日期:2014-06-16 出版日期:2014-09-12 网络出版日期:2014-07-10
  • 通讯作者: 王振林, E-mail: zlwang@sdau.edu.cn, Tel: 0538-8241359
  • 基金资助:

    本研究由山东省现代农业技术体系建设专项,国家公益性行业(农业)科研专项经费项目(201203100, 201203029),国家自然科学基金项目(31271661)和国家粮食丰产科技工程(2012BAD04B05)资助。

Effect of Nitrogen Fertilization Timing on Lignin Synthesis of Stem and Physiological Mechanism of Lodging Resistance in Wheat 

LU Kun-Li,YIN Yan-Ping,WANG Zhen-Lin*,LI Yong,PENG Dian-Liang,YANG Wei-Bing,CUI Zheng-Yong,YANG Dong-Qing,JIANG Wen-Wen   

  1. National Key Laboratory of crop Biology/ Agronomy College, Shandong Agricultural University, Tai’an 271018, China?
  • Received:2013-11-25 Revised:2014-06-16 Published:2014-09-12 Published online:2014-07-10
  • Contact: 王振林, E-mail: zlwang@sdau.edu.cn, Tel: 0538-8241359

摘要:

为明确氮肥施用模式对小麦茎秆木质素合成与积累及抗倒伏能力的影响,2011—2012和2012—2013生长季,选用济麦22 (抗倒伏)和山农16 (不抗倒伏)品种,分析不同生育期追施氮肥处理的茎秆木质素含量和木质素合成相关酶活性,及其与抗倒伏指数和产量的关系。各处理总施氮量为240 kg hm−2,其中80 kg hm−2播前基施,其余氮肥按4种模式追施,分别是起身期和孕穗期各一半(N1)、拔节期全施(N2)、拔节期和开花期各一半(N3)和孕穗期全施(N4)。与N2和N3处理相比,N1和N4处理的茎秆木质素含量高,茎秆抗折力大,茎秆抗倒能力强。各处理对木质素合成关键酶活性有显著影响,其中N1的苯丙氨酸解氨酶(PAL)、酪氨酸解氨酶(TAL)和过氧化物酶(POD)活性较高N2处理2节间形成后0~7 d时PAL、TAL和POD活性显著高于其他处理,但第2节间形成后21 d时迅速下降N3处理第2节间形成后0~21 d时PAL、TAL和POD活性低,但开花期(21 d)追氮延缓了3种酶活性的降低N4处理显著提高了第2节间形成14 d后的酶活性。在乳熟期和蜡熟期,两品种的基部茎秆抗折力和抗倒伏指数均以N1和N4处理显著优于其他处理,并且N1和N4处理的籽粒产量也显著高于其他处理。试验结果表明,孕穗期追肥的N1和N4处理有助于提高茎秆中PAL、TAL、POD活性及木质素含量,提高小麦茎秆的机械强度及抗倒伏能力,降低小麦倒伏面积和倒伏程度。

关键词: 小麦, 氮肥管理, 酶活性, 木质素, 抗倒伏, 产量

Abstract:

For understanding the effects of nitrogen management on lignin synthesis in wheat stem and plant lodging resistance, a field experiment was conducted, using the lodging resistant cultivar Jimai 22 and the lodging sensitive cultivar Shannong 16, in 2011–2012 and 2012–2013 growing seasons. The lignin accumulation in stem, activities of enzymes related to lignin synthesis, lodging resistance index, and grain yield were evaluated under four nitrogen treatments. All treatments received 240 kg ha–1 nitrogen during the whole growth period, in which 80 kg ha−1 was applied before sowing. The remaining nitrogen was applied at pseudo stem erection and booting stages (1:1) for N1, at jointing stage for N2, at jointing and anthesis stages (1:1) for N3, and at booting stage for N4 treatment. Compared with N2 and N3, N1 and N4 were superior in lignin content, stem mechanical strength, and lodging resistance. Nitrogen fertilization timing had significant effects on activities of phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), and peroxidase (POD). Under N1 condition, the three key enzymes were in high activity. PAL, TAL and POD activities were higher in N2 treatment than in other treatments at 0–7 d after emergence of the second internode (ESI), and dropped rapidly at 21 d after ESI. Under N3 condition, the PAL, TAL and POD activities were low at 0–21 d after ESI, and the activity decline was alleviated by the nitrogen supplement at anthesis stage (21 d after ESI). Under N4 condition, the activities of these enzymes were increased after 14 d of ESI. At milk and dough stages, both cultivars had higher snapping resistance of the basal stem in N1 and N4 than in N2 and N3 treatments. Besides, the lodging resistance index and grain yield were also significantly higher in N1 and N4 than in N2 and N3. These results indicated that nitrogen applied at booting stage (N1 and N4 treatments) is propitious to increase PAL, TAL, POD activities and lignin content in stem, leading to the improved stem mechanical strength and decreased lodging area and lodging degree of wheat.

Key words: Wheat, Nitrogen management, Enzyme activity, Lignin, Lodging resistance, Yield

[1]罗茂春, 田翠婷, 李晓娟, 林金星. 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述. 西北植物学报, 2007, 27: 2346–2353



Luo M C, Tian C T, Li X J, Lin J X. Relationship between morpho-anatomical traits together with chemical components and lodging resistance of stem in rice. Acta Bot. Bor-Occid.Sin, 2007, 27: 2346–2353 (in Chinese with English abstract)



[2]杨世民, 谢力, 郑顺林, 李静, 袁继超. 氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响. 作物学报, 2009, 35: 93–103



Yang S M, Xie L, Zheng S L, Li J, Yuan J C. Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice. Acta Agron Sin, 2009, 35: 93–103 (in Chinese with English abstract)



[3]井长勤, 周忠, 张永. 氮肥运筹对小麦倒伏影响的研究. 徐州师范大学学报, 2003, 21(4): 46–49



Jing C Q, Zhou Z, Zhang Y. Effects of Nitrogenous fertilizer application lodging on winter wheat. J Xuzhou Normal Univ, 2003, 21(4): 46–49 (in Chinese)



[4]张睿, 黄历. 小麦生产中倒伏原因分析及解决对策. 陕西农业科学, 2001, (5): 39



Zhang R, Huang L. Analysis of lodging cause and counter measures in wheat production. Shaanxi J Agric Sci, 2001, (5): 39 (in Chinese)



[5]Zahour A, Rasmusson D C, Gallagher L W. Effects of semi-dwarf stature, head number, and kernel number on grain yield in barley in morocco. Crop Sci, 1987, 27: 161–165



[6]Wiersma D W, Oplinger E S, Guy S O. Environment and cultivar effects on winter wheat response to ethephon plant growth regulator. Agron J, 1986, 78: 761–764



[7]肖世和, 张秀英, 闫长生, 张文祥, 海林, 郭慧君. 小麦茎秆强度的鉴定方法研究. 中国农业科学, 2002, 35: 7–11



Xiao S H, Zhang X Y, Yan C S, Zhang W X, Hai L, Guo H J. Determination of resistance to lodging by stem strength in wheat. Sci Agri Sin, 2002, 35: 7–11 (in Chinese with English abstract )



[8]李金才, 尹钧, 魏凤珍. 播种密度对冬小麦茎秆形态特征和抗倒指数的影响. 作物学报, 2005, 31: 662–666



Li J C, Yin J, Wei F Z. Effects of planting density on characters of culm and culm lodging resistant index in winter wheat. Acta Agron Sin, 2005, 31: 662–666 (in Chinese with English abstract)



[9]魏凤珍, 李金才, 王成雨, 屈会娟, 沈学善. 氮肥运筹模式对小麦茎秆抗倒性能的影响. 作物学报, 2008, 34: 1080–1085



Wei F Z, Li J C, Wang C Y, Qu H J, Shen X S. Effects of nitrogenous fertilizer application model on culm lodging resistance in winter wheat. Acta Agron Sin, 2008, 34: 1080–1085 (in Chinese with English abstract)



[10]Turner S R, Somerville C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell, 1997, 9: 689–701



[11]Lewis N G, Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol, 1990, 41: 455–496



[12]Welton F A. Lodging in oats and wheat. Bot Gazatte, 1928, 85: 121



[13]Tripathi S C, Sayre K D, Kaul J N. Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crops Res, 2003, 84: 271–290



[14]陈晓光, 史春余, 尹燕枰, 王振林, 石玉华, 彭佃亮, 倪英丽, 蔡铁. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011, 37: 1616–1622



Chen X G, Shi C Y, Yin Y P, Wang Z L, Shi Y H, Peng D L, Ni Y L, Cai T. Relationship between lignin metabolism and lodging resistance in Wheat. Acta Agron Sin, 2011, 37: 1616–1622 (in Chinese with English abstract)



[15]董琦, 王爱萍, 梁素明. 小麦基部茎节形态结构特征与抗倒性的研究. 山西农业大学学报, 2003, 23: 188–191



Dong Q, Wang A P, Liang S M. Study on the architectural characteristics of wheat stalks. J Shanxi Agric Univ, 2003, 23: 188–191 (in Chinese with English abstract)



[16]马跃芳, 金晓平, 龚辉. 大麦倒伏原因的初步研究. 作物研究, 1990, 4(4): 22–25



Ma Y F, Jin X P, Gong H. Preliminary study of barley lodging. Crop Res, 1990, 4(4): 22–25 (in Chinese)



[17]徐本生. 施用氮肥与小麦倒伏的关系. 土壤, 1961, (8): 53–54



Xu B S. The relationship between nitrogen application and wheat lodging. Soils, 1961, (8): 53–54 (in Chinese)



[18]李友军, 傅国占, 王绍中, 郭天财. 高产地小麦前氮后移施肥技术. 作物杂志, 1997, (3): 15–16



Li Y J, Fu G Z, Wang S Z, Guo T C. Nitrogenous fertilizer retroposition technology in high yielding fields. Crops, 1997, (3): 15–16 (in Chinese)



[19]陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒性的关系. 中国农业科学, 2011, 44: 3529–3536



Chen X G, Shi Y H, Wang C Y, Yin Y P, Ning T Y, Shi C Y, Li Y, Wang Z L. Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of Wheat. Sci Agric Sin, 2011, 44: 3529–3536 (in Chinese with English abstract)



[20]Zadoks J C, Chang T T, Konzak C F. A decimal code for the growth stages of cereals. Weed Res, 1974, 14: 415–421



[21]Bhaskara Reddy M V, Arul J, Angers P, Couture L. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J Agric Food Chem, 1999, 47: 1208-1216



[22]张志良, 瞿伟. 植物生理学实验指导. 北京: 高等教育出版社, 2003. pp 277–278



Zhang Z L, Qu W. Experimental Guide for Plant Physiology. Beijing: Higher Education Press, 2003. pp 277–278 (in Chinese)



[23]Kofalvi S A, Nassuth A. Influence of wheat streak mosaic virus infection on phenylpropanoid metabolism and the accumulation of phenolics and lignin in wheat. Physiol Mol Plant P, 1995, 47: 365–377



[24]Klapheck S, Zimmer I, Cosse H. Scavenging of hydrogen peroxide in the endosperm of ricinus communis by ascorbate peroxidase. Plant Cell Physiol, 1990, 31: 1005–1013



[25]石海燕, 张玉星. 木质素生物合成途径中关键酶基因的分子特征. 中国农学通报, 2011, 27(5): 288–291



Shi H Y, Zhang Y X. Molecular characterization of key enzyme genes related to the pathway of lignin biosynthesis. Chin Agric Sci Bull, 2011, 27(5): 288–291 (in Chinese with English abstract)



[26]Ookawa T, Ishihara K V. Difference of the cell wall components affecting the ding stress of the culm in relating to the lodging resistance in paddy rice. Jpn J Crop Sci, 1993, 62: 378–384



[27]Strivastava L M. Histochemical studies on lignin. Methods Enzymol, 1996, 49: 173–183



[28]Kokubo A, Sakurai N, Kuraishi S, Takeda K. Culm brittleness of barley (Hordeum vulgar L.) mutants is caused by smaller number of cellulose molecules in cell wall. Plant Physiol, 1991, 97: 509–514



[29]Updegraff D M. Semimicro determination of cellulose in biological materials. Anal Biochem, 1969, 32: 420–424



[30]解新明, 赵燕慧, 霍松, 陈慧. 象草不同品种木质素合成关键酶活性的动态变化. 草地学报, 2010, 18: 523–527



Xie X M, Zhao Y H, Huo S, Chen H. Dynamic changes of Enzyme activities related to lignin biosynthesis for elephant grass cultivars. Acta Agrestia Sin, 2010, 18: 523–527 (in Chinese with English abstract)



[31]Sewalt V J H, Ni W, Blount J W, Jung H G, Masoud S A, Howles P A, Lamb C, Dixon R A. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonialyase or cinnamate 4-hydroxylase. Plant Physiol, 1997, 115: 41–50



[32]刘晓燕, 金继运, 何萍, 高伟, 李文娟. 氯化钾对玉米木质素代谢的影响及其与茎腐病抗性的关系. 中国农业科学, 2007, 40: 2780–2787



Liu X Y, Jin J Y, He P, Gao W, Li W J. Effect of potassium chloride on lignin metabolism and its relation to resistance of corn to stalk rot. Sci Agric Sin, 2007, 40: 2780–2787 (in Chinese with English abstract)



[33]王群瑛, 胡昌浩. 玉米茎秆抗倒特性的解剖研究. 作物学报, 1991, 17: 70–75



Wang Q Y, Hu C H. Studies on the anatomical structures of the stalks of maize with different resistance to lodging. Acta Agron Sin, 1991, 17: 70–75 (in Chinese)



[34]薛应钰, 师桂英, 徐秉良, 陈荣贤. 美洲南瓜(Cucurbita pepo)种皮发育形态观察及其相关酶活性测定. 草业学报, 2011, 20(2): 23–30



Xue Y Y, Shi G Y, Xu B L, Chen R X. Morphological observations on episperm development and related enzyme activity determination in Cucurbita pepo. Acta Pratac Sin, 2011, 20(2): 23–30 (in Chinese)



[35]王晨阳, 朱云集, 夏国军, 宋家永, 李九星, 王永华, 罗毅. 氮肥后移对超高产小麦产量及生理特性的影响. 作物学报, 1998, 24: 978–983



Wang C Y, Zhu Y J, Xia G J, Song J Y, Li J X, Wang Y H, Luo Y. Influence of Nitrogen retroposition on wheat yield and physiological characteristics. Acta Agron Sin, 1998, 24: 978–983 (in Chinese)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!