作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1677-1685.doi: 10.3724/SP.J.1006.2014.01677
王翠娟1,史春余1,*,王振振1,柴沙沙1,柳洪鹃1,史衍玺2
WANG Cui-Juan1,SHI Chun-Yu1,*,WANG Zhen-Zhen1,CHAI Sha-Sha1,LIU Hong-Juan1,SHI Yan-Xi2
摘要:
选用济徐23为材料,进行2年的大田试验和一年的盆栽试验,研究2种覆膜栽培对甘薯生长前期幼根生长发育和吸收能力、分化根内源激素含量和封垄期单株块根鲜重的影响及其与产量的关系。结果表明,覆黑色膜和覆透明膜处理与对照相比,均显著(P<0.05)增加甘薯秧苗栽植后10 d和20 d的幼根数量、总长度、鲜重、表面积、体积和幼根根系的吸收面积、活跃吸收面积,其中的幼根数量、鲜重、体积、幼根根系的吸收面积、活跃吸收面积在2种覆膜处理间差异显著(P<0.05),覆黑色膜优于覆透明膜;2种覆膜处理显著(P<0.05)提高秧苗栽植后10 d的根系活力,且覆黑色膜优于覆透明膜。同时,在块根分化期(秧苗栽植后20 d和30 d)2种覆膜处理显著(P<0.05)提高了分化根的ZR含量,促进初生形成层的活动和块根形成;在块根膨大初期(秧苗栽植后40 d)2种覆膜处理显著(P<0.05)提高分化根的ABA含量和显著(P<0.05)降低分化根的GA含量,促进次生形成层的活动、淀粉积累和块根膨大,其中,块根膨大初期2种覆膜处理ABA和GA含量差异显著(P<0.05),均覆黑色膜处理效果最好。在2年的大田试验中,2种覆膜处理与对照相比,均显著提高了甘薯封垄期的单株有效薯块数和单薯鲜重,覆黑色膜的单株有效薯块数高于覆透明膜,而覆透明膜的单薯鲜重显著(P<0.05)大于覆黑色膜处理。覆黑色膜和覆透明膜处理2011年分别增产10.71%和5.76%,2012年分别增产12.99%和7.45%。
[1]于振文. 作物栽培学各论. 北京: 中国农业出版社, 2003. p 128Yu Z W. Crop Cultivation. Beijing: China Agriculture Press, 2003. p 128 (in Chinese)[2]史春余, 王振林, 余松烈. 土壤通气性对甘薯产量的影响及其生理机制. 中国农业科学, 2001, 34: 173–178Shi C Y, Wang Z Z, Yu S L. Effect of soil aeration on sweet potato yield and its physiological mechanism. Sci Agric Sin, 2001, 34: 173–178 (in Chinese with English abstract) [3]史春余, 王振林, 赵秉强, 郭风法, 余松烈. 钾营养对甘薯某些生理特性和产量形成的影响. 植物营养与肥料学报, 2002, 8: 81–85Shi C Y, Wang Z Z, Zhao B Q, Guo F F, Yu S L. Effect of potassium nutrition on some physiological characteristics and yield formation of sweet potato. Plant Nutr Fert Sci, 2002, 8: 81–85 (in Chinese with English abstract)[4]陈晓光, 李洪民, 张爱君, 史新敏, 唐忠厚, 魏猛, 史春余. 不同氮水平下多效唑对食用型甘薯光合和淀粉积累的影响. 作物学报, 2012, 38: 1728–1733Chen X G, Li H M, Zhang A J, Shi X M, Tang Z H, Wei M, Shi C Y. Effect of paclobutrazol under different N-application rates on photosynthesis and starch accumulation in edible sweet potato. Acta Agron Sin, 2012, 38: 1728–1733 (in Chinese with English abstract)[5]马代夫, 朱崇文. 甘薯壮苗增产的生理基础. 中国甘薯, 1987, 91: 114–118Ma D F, Zhu C W. Physiological basis of sweet potato strong seedling on high tuberous root yield. Chin Sweet Potato, 1987, 91: 114–118 (in Chinese)[6]王有宁, 王荣堂, 董秀荣. 地膜覆盖作物农田光温效应研究. 中国生态农业学报, 2004, 12 (3): 139–141Wang Y N, Wang R T, Dong X R. Light temperature effect of farm land coving with film. Chin J Eco-Agric, 2004, 12 (3): 139–141 (in Chinese with English abstract)[7]王喜庆, 李生秀, 高亚军. 地膜覆盖对旱地春玉米生理生态和产量的影响. 作物学报, 1998, 24: 348–353Wang X Q, Li S X, Gao Y J. Effect of plastic film mulching on ecophysiology and yield of the spring maize on the arid land. Acta Agron Sin, 1998, 24: 348–353 (in Chinese with English abstract)[8]马志民, 刘兰服, 姚海兰, 张松树. 不同覆膜方式对甘薯生长发育的影响. 西北农业学报, 2012, 21(5): 103–107Ma Z M, Liu L F, Yao H L, Zhang S S. Effect of different film mulching methods on growth and development of sweet potato. Acta Agric Bor-occid Sin, 2012, 21: 103–107 (in Chinese with English abstract)[9]王庆美. 紫甘薯产量和品质形成生理机制及对弱光、地膜覆盖响应研究. 山东农业大学, 博士论文, 2007. p 117Wang Q M. Mechanism of Root Yield and Quality Formation of Sweet Potato and Response to Shading and Plastic Mulch. Shandong Agricultural University, PhD Dissertation 2007. p 117 (in Chinese with English abstract)[10]李雪英, 朱海波, 刘刚, 侯丽娟, 丛晓飞. 地膜覆盖对甘薯垄内温度和产量的影响. 作物杂志, 2012, (1): 121–123Li X Y, Zhu H B, Liu G, Hou L J, Cong X F. Effects of plastic film mulching of sweet potato on in-row temperature and yield. Crops, 2012, (1): 121–123 (in Chinese with English abstract)[11]李云, 宋吉轩, 石乔龙. 覆膜对甘薯生长发育和产量的影响. 南方农业学报, 2012, 43: 1124–1128 Li Y, Song J X, Shi Q L. Effects of film mulching on growth, development, and yield of sweet potato. J South Agric, 2012, 43: 1124–1128 (in Chinese with English abstract)[12]Novak B, ?uti? I, Toth N. Sweet potato yield influenced by seedlings and mulching. Agric Conspectus Sci, 2007, 72(4): 357–359[13]Kuranouchi, Nakamura, Takada, Tamiya, Nakatani, Kumagai. Effects of mulching with polyethylene film and weather on agronomic characters of sweet potato varieties for steamed and cured slices processing. Jpn J Crop Sci, 2010, 79: 491–498[14]赵世杰, 刘华山, 董新纯. 植物生理学实验指导. 北京: 中国农业科技出版社, 1998. pp 68–72Zhao S J, Liu H S, Dong X C. Guidance of Plant Physiological Experiment. Beijing: China Agriculture Scientech Press, 1998. pp 68–72 (in Chinese)[15]杨铁钊, 杨志晓, 聂红资. 富钾基因型烤烟的钾积累及根系生理特性. 作物学报, 2009, 35: 159–164Yang T Z, Yang Z X, Niu H Z. Potassium accumulation and root physiological characteristics of potassium-enriched flue-cured tobacco genotypes. Acta Agron Sin, 2009, 35: 159–164 (in Chinese with English abstract)[16]叶宝兴, 毕建杰, 孙印石. 植物细胞与组织研究方法. 北京: 化学工业出版社, 2011. pp 49–57Ye B X, Bi J J, SunY S. Research Methods of Plant Cells and Tissues. Beijing: Chemical Industry Press, 2011. pp 49–57 (in Chinese)[17]何钟佩. 农作物化学控制实验指导. 北京: 中国农业大学出版社, 1993. pp 60–68He Z P. Experimental of Plant Physiology. Beijing: China Agricultural University Press, 1993. pp 60–68 (in Chinese)[18]Villordon A Q, La Bonte D R, Firon N, Kfir Y, Pressman E, Schwartz A. Characterization of adventitious root development in sweet potato. Hort Sci, 2009, 44: 651–655[19]宋海星, 李生秀. 水, 氮供应和土壤空间所引起的根系生理特性变化. 植物营养与肥料学报, 2004, 10: 6–11Song H X, Li S X. Changes of root physiological characteristics resulting from supply of water, nitrogen and root-growing space in soil. Plant Nutr Fert Sci, 2004, 10: 6–11 (in Chinese with English abstract)[20]Nakatani M. In vitro formation of tuberous roots in sweet potato. Jpn J Crop Sci, 1994, 63: 158–159[21]Nakatani M, Matsuda T. Immunohisto chemical localization of zeatin riboside in tuberous root of sweet potato. Jpn J Crop Sci, 1992, 61: 685–686[22]Matsuo T, Yoneda T. Identification of free cytokinins and the changes in endogenous levels during tuber development of sweet potato (Ipomoea batatas Lam.). Plant Cell Physiol, 1983, 24: 1305–1312[23]Nakatani M, Komeichi M. Changes in the endogenous level of zeatin riboside, abscisic acid and indole acetic acid during formation and thickening of tuberous roots in sweet potato. Jpn J Crop Sci, 1991, 60: 91–100[24]王庆美, 张立明, 王振林. 甘薯内源激素变化与块根形成膨大的关系. 中国农业科学, 2005, 38: 2414–2420Wang Q M, Zhang L M, Wang Z L. Formation and thickening of tuberous roots in relation to the endogenous hormone concentrations in sweet potato. Sci Agric Sin, 2005, 38: 2414–2420 (in Chinese with English abstract)[25]Jimenez J I, Garner J O. Effect of growth regulators on the initiation and development of storage roots in rooted leaves of sweet potato. Phyton Argentina, 1983, 43(1): 117–124[26]Nakatani M, Komeichi M. Changes in endogenous indole acetic acid level during development of roots in sweet potato. Jpn J Crop Sci, 1992, 61: 683–684[27]Ravi V, Indira P. Crop physiology of sweet potato. Hor Rev, 1999, 23: 277–339[28]Noh S A, Lee H S, Huh E J, Huh, G. H, Paek, K. H, Shin, J. S, Bae, J. M.. SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweet potato. J Exp Bot, 2010, 61: 1337–1349[29]Nakatani M, Tanaka M, Yoshinaga M. Physiological and anatomical characterization of a late storage root forming mutant of sweet potato. J Am Soc Horticul Sci , 2002, 127: 178–183[30]史春余, 王振林, 郭风法, 余松烈. 甘薯块根膨大过程中ATP酶活性, ATP和ABA含量的变化. 西北植物学报, 2002, 22: 107–112Shi C Y, Wang Z L, Guo F F, Yu S L. Changes of ATPase activity, ATP and ABA content in storage roots during storage root thickening of sweet potato. Acta Bot Bor-Occi Sin, 2002, 22: 315–320 (in Chinese with English abstract)[31]Sasaki T, Kainuma K. Control of starch and exocellular polysaccharides biosynthesis by gibberellic acid with cells of sweet potato cultured in vitro. Plant Cell Rep, 1984, 3: 23–26[32]Wilson L A, Lowe S B. The anatomy of the root system in West Indian sweet potato cultivars. Ann Bot, 1973, 37: 633–643[33]BelehuT, Hammes P S, Robbertse P J. The origin and structure of adventitious roots in sweet potato (Ipomoea batatas). Aust J Bot, 2004, 52: 551–558 |
[1] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[2] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[3] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[7] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[8] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[9] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[10] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[11] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[12] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[13] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681. |
|