欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1667-1676.doi: 10.3724/SP.J.1006.2014.01667

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米自交系吐丝期叶片光合参数与其耐旱性的关系

陈春梅,高聚林*,苏治军,于晓芳,胡树平,赵晓亮   

  1. 内蒙古农业大学农学院, 内蒙古呼和浩特 010019
  • 收稿日期:2013-12-16 修回日期:2014-06-16 出版日期:2014-09-12 网络出版日期:2014-07-10
  • 通讯作者: 高聚林, E-mail: nmgaojulin@163.com
  • 基金资助:

    本研究由内蒙古杰出青年基金项目(2011JQ02), 国家现代农业产业技术体系建设专项(CARS-02-63)和国家粮食丰产科技工程项目(2011BAD16B13, 2012BAD04B04, 2013BAD07B04, 2011BAD16B14)资助。

Relationship between Leaf Photosynthetic Parameters and Drought Resistance at Silking Stage in Maize Inbred Lines

CHEN Chun-Mei,GAO Ju-Lin*,SU Zhi-Jun,YU Xiao-Fang,HU Shu-Ping,ZHAO Xiao-Liang   

  1. College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China?
  • Received:2013-12-16 Revised:2014-06-16 Published:2014-09-12 Published online:2014-07-10
  • Contact: 高聚林, E-mail: nmgaojulin@163.com

摘要:

从玉米自交系吐丝期光合特性适应干旱环境的角度,探索玉米自交系的耐旱性。2012年在土默川平原灌区和河套平原灌区以及2013年河套平原灌区,利用耐旱性不同的51个玉米自交系,在吐丝期采取干旱胁迫处理,研究分析了叶片光合相关参数对干旱胁迫的响应及其与耐旱性的关系。结果表明,玉米自交系在吐丝期干旱胁迫与正常灌溉条件下PnTrGsCiFv/FmΦPSII和SPAD的相对值与其耐旱系数呈极显著正相关,WUE相对值与耐旱系数呈极显著负相关,而qNqP的相对值与耐旱系数不相关;上述8个叶片光合参数与耐旱系数的逐步回归分析表明,Pn、WUE、Fv/FmΦPSII和SPAD相对值与耐旱系数在0.01水平显著相关,Pn、WUE、SPAD相对值对耐旱系数有直接贡献,而Fv/FmΦPSII对耐旱系数起间接作用。通过上述5个显著相关光合参数将两年三地表现一致的32份自交系的抗旱性分为3类,第1类8份(H201、H21、英64、吉842、早49、吉8415、东46和沈137)属于耐旱性强的;第2类15份属于耐旱性较强的;第3类9份属于耐旱性弱的,此结果与对应的自交系产量差异分类结果相一致。因此,玉米自交系吐丝期Pn、WUE、Fv/FmΦPSII、SPAD的相对值和耐旱系数可作为其耐旱性评价指标。建立了3类耐旱性玉米自交系吐丝期Pn、WUE、Fv/FmΦPSII、SPAD的相对值与耐旱系数的回归关系,并明确了其阈值范围。

关键词: 玉米自交系, 吐丝期, 干旱胁迫, 光合指标

Abstract:

 To explore drought resistance of maize inbred lines, based on leaf photosynthetic parameters at silking stage, we treated 51 maize inbred lines with drought stress at silking stage in Humochuanpingyuanguanqu and Hetaopingyuanguanqu in 2012 and 2013 to analyze response of leaf photosynthetic parameters to drought stress and the relationship between photosynthetic parameters and drought tolerance. The result indicated that at silking stage, no matter under drought and the condition of irrigation, Pn, Tr, Gs, Ci, Fv/Fm, ΦPSII, and SPAD had a significant and positive correlation with drought resistance coefficient, WUE had a significant and negative correlation with it, while qN and qP had no correlation with it. Stepwise regression analysis on the eight leaf photosynthetic parameters above showed that Pn, WUE, Fv/Fm, ΦPSII, and SPAD significantly correlated with drought resistance coefficient at P < 0.01. Pn, WUE and SPAD directly contributed to drought resistance coefficient, while Fv/Fm and ΦPSII contributed indirectly. Thirty-two maize inbred lines were classified into three groups based on different drought resistance, group 1 with the highest drought resistance contained eight inbred lines (H201, H21, Ying 64, Ji 842, Zao 49, Ji 8415, Dong 46, and Shen 137), group 2 with the higher drought resistance contained fifteen lines and group 3 with the lowest drought resistance contained nine lines. The grouping result was consistant with that of yield classification.Therefore, at silking stage, Pn, WUE, Fv/Fm, ΦPSII, SPAD, and drought resistance coefficient can be used as drought resistance evaluation indexes established for the three groups of maize inbred lines. Regression relationship was between Pn, WUE, Fv/Fm, ΦPSII, SPAD, and drought resistance coefficient at silking stage, and the threshold values were confirmed.

Key words: Maize inbred lines, silking stage, drought stress, photosynthetic parameter

[1]Campos H, Cooper M, Habben J E, Edmeades G O, Schussler J R. Improving drought tolerance in maize: a view from industry. Field Crops Res, 2004, 90: 19–34



[2]Welsh Catherine E, McMillan L. Accelerating the inbreeding of multi-parental recombinant inbred lines generated by sibling matings. Genes, Genomes, Genetics (Bethesda), 2012, 2: 191–198



[3]Henry T, Singh S P. Comparison of sources and lines selected for drought resistance in common bean. Crop Sci, 2002, 42: 64–70



[4]Lee M, Jung J H, Han D Y, Seo P J, Park W J, Park C M. Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta, 2012, 235: 925–938



[5]De Diego N, Pérez-Alfocea F, Cantero E, Lacuesta M, Moncaleán P. Physiological response to drought in radiata pine: phytohormone implication at leaf level. Tree Physiol, 2012, 32: 435–449



[6]Medrano H, Escalona J M, Bota J, Gulías J, Flexas J. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot, 2002, 89: 895–905



[7]Saint Pierre C, Crossa J L, Bonnett D, Yamaguchi-Shinozaki K, Reynolds M P. Phenotyping transgenic wheat for drought resistance. J Exp Bot, 2012, 63: 1799–1808



[8]Deeba F, Pandey A K, Ranjan S, Mishra A, Singh R, Sharma Y K, Shirke P A, Pandey V. Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem, 2012, 53: 6–18



[9]H Sjursen, Bayley M, Holmstrup M. Enhanced drought tolerance of a soil-dwelling springtail by pre-acclimation to a mild drought stress. J Insect Physiol, 2001, 47: 1021–1027



[10]Aroca R, Irigoyen J J, Sánchez-díaz M. Drought enhances maize chilling tolerance: II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant, 2003, 117: 540–549



[11]Baker N R, Rosenqvist E. Application of chlorophyll fluorescencecan improve crop production strategies: an examination of future possibilities. J Exp Bot, 2004, 55: 1607–1621



[12]Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non photochemical chlorophyll fluorescence equenching with a new type of modulation fluorometer. Photosynth Res, 1986, 10: 51–62



[13]Selmani A, Wasson C E. Daytime chlorophyll fluorescence measurement in field-grown maize and its genetic variability under well-water and water-stressed conditions. Field Crops Res, 2003, 31: 173–184



[14]胡秀丽, 李艳辉, 杨海荣, 刘全军, 李潮海. HSP70可提高干旱高温复合胁迫诱导的玉米叶片抗氧化防护能力. 作物学报, 2010, 36: 636–644



Hu X L, Li Y H, Yang H R, Liu Q J, Li C H. Heat shock protein 70 may improve the ability of antioxidant defense induced by the combination of drought and heat in maize leaves. Acta Agron Sin, 2010, 36: 636–644 (in Chinese with English abstract)



[15]Hsiao. Plant responses to water stress. Annu Rev Plant Physical, 1973, 24: 570–579



[16]Harrigan G G, Ridley W P, Miller K D, Sorbet R, Riordan S G, Nemeth M A, Reeves W, Pester T A. The forage and grain of MON 87460, a drought-tolerant corn hybrid, are compositionally equivalent to that of conventional corn. J Agric Food Chem, 2009, 57: 9754–9763



[17]张守仁. 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 1999, 16: 444–448



Zhang S R. A discussion of chlorophyll fluorescence kinetics parameter and their significance. Chin Bull Bot, 1999, 16: 444–448 (in Chinese)



[18]Lu Y L, Hao Z F, Xie C X. Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Res, 2011, 124: 37–45



[19]许大全. 光合作用效率. 上海: 上海科学技术出版社, 2009



Xu D Q. Photosynthetic Efficiency. Shanghai: Shanghai Scientific and Technical Publishers, 2009 (in Chinese)



[20]Harp R E, Poroyko V, Hejlek L G, Spollen W G, Springer G K, Bohnert H J, Nguyen H T. Root growth maintenance during water deficits: physiology to functional genomies. J Exp Bot, 2004, 55: 2343–2351



[21]陈建明, 俞晓平, 程家安. 叶绿素荧光动力学及其在植物抗逆生理研究中的应用. 浙江农业学报, 2006, 18(1): 51–55



Chen J M, Yu X P, Cheng J A. The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses. Acta Agric Zhejiangensis, 2006, 18(1): 51–55 (in Chinese)



[22]白向历, 孙世贤, 杨国航, 刘明, 张振平, 齐华. 不同生育时期水分胁迫对玉米产量及生长发育的影响. 玉米科学, 2009, 17(2): 60–63



Bai X L, Sun S X, Yang G H, Liu M, Zhang Z P, Qi H. Effect of water stress on maize yield during different growing stages. J Maize Sci, 2009, 17(2): 60–63(in Chinese with English abstract)



[23]孙璐, 周宇飞, 汪澈, 肖木辑, 陶冶, 许文娟, 黄瑞冬.高粱品种萌发期耐盐性筛选与鉴定. 中国农业科学, 2012,45: 1714–1722



Sun L, Zhou Y F, Wang C, Xiao M J, Tao Y, Xu W J, Huang R D. Screening and identification of sorghum cultivars for salinity tolerance during germination. Sci Agric Sin, 2012, 45: 1714–1722 (in Chinese with English abstract)



[24]Baquedano F J, Castillo F J. Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees, 2006, 20: 689–700



[25]付学琴, 贺浩华, 文飘, 罗向东, 谢建坤. 东乡野生稻回交重组系的抗旱性评价体系. 应用生态学报, 2012, 23: 1277–1285



Fu X Q, He H H, Wen P, Luo X D, Xie J K. Drought resistance evaluation system for backcross lines of Dongxiang common wild rice (Oryza rufipogon Griff.). Chin J Appl Ecol, 2012, 23: 1277–1285 (in Chinese with English abstract)



[26]李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000



Li H S. Experimental Principle and Technique for Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000 (in Chinese)



[27]Bouslama M, Schapaugh W T Jr. Stress tolerance in soybeans: I. Evaluation of three screening techniques for heat and drought tolerance. Crop Sci, 1984, 24: 933–937



[28]龚明. 作物抗旱性鉴定方法与指标及其综合评价. 云南农业大学学报, 1989, 4(1): 73–81



Gong M. Screening methods and index of drought resistance in crops and comprehensive evaluation. J Yunnan Agric Univ, 1989, 4(11): 73–81 (in Chinese)



[29]Pollard Daniel A. Design and construction of recombinant inbred lines. Methods Mol Biol, 2012, 871: 31–39

[1] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[2] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[3] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[4] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[5] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[6] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[7] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
[8] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[9] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051.
[10] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[11] 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364.
[12] 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704.
[13] 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275.
[14] 李鹏程,毕真真,梁文君,孙超,张俊莲,白江平. DNA甲基化参与调控马铃薯干旱胁迫响应[J]. 作物学报, 2019, 45(10): 1595-1603.
[15] 米超,赵艳宁,刘自刚,陈其鲜,孙万仓,方彦,李学才,武军艳. 白菜型冬油菜RuBisCo蛋白亚基基因rbcLrbcS的克隆及其在干旱胁迫下的表达[J]. 作物学报, 2018, 44(12): 1882-1890.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!