欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1658-1666.doi: 10.3724/SP.J.1006.2014.01658

• 耕作栽培·生理生化 • 上一篇    下一篇

IAA、GA3和ABA对稻根负向光性和生长的影响

刘大同,荆彦平,史海翔,钟婷婷,王忠*   

  1. 扬州大学生物科学与技术学院 / 江苏省作物遗传生理重点实验室,江苏扬州 225009
  • 收稿日期:2014-01-29 修回日期:2014-06-16 出版日期:2014-09-12 网络出版日期:2014-07-10
  • 通讯作者: 王忠, E-mail: wangzhong@yzu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30871467)和江苏省普通高校研究生创新基金(CXZZ11_0976)资助。

Impact of IAA, GA3, and ABA on Negative Root Phototropism and Root Growth of Rice

LIU Da-Tong,JING Yan-Ping,SHI Hai-Xiang,ZHONG Ting-Ting,WANG Zhong*   

  1. College of Bioscience and Biotechnology, Yangzhou University / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou 225009, China
  • Received:2014-01-29 Revised:2014-06-16 Published:2014-09-12 Published online:2014-07-10
  • Contact: 王忠, E-mail: wangzhong@yzu.edu.cn

摘要:

为探明稻根负向光性与内源植物激素含量的关系,以及外源激素对水稻根系生长的影响,以扬稻6号(籼稻)、日本晴(粳稻)和中花11 (粳稻)的OsPIN1a超表达转基因水稻为材料,观察了根负向光性生长的过程,分析了负向光弯曲部位内源生长素(IAA)、赤霉素(GA3)和脱落酸(ABA)的含量,以及外源激素对水稻根系形态和解剖结构的影响。结果表明, 扬稻6号和日本晴的根都具有负向光性,扬稻6号侧根和不定根的负向光性大于日本晴;2种材料中,IAA、GA3和ABA在发生负向光弯曲过程中的含量变化基本一致。光照引起3种激素的含量下降;向光侧的含量低于背光侧。单侧光照和外施IAA共同促进了籼稻根毛的大量发生;与普通水稻相比,OsPIN1a超表达稻株的根负向光性角度增大。外源GA3和ABA处理与稻根负向光性间无直接关系;外源ABA处理显著抑制了根的生长,单株根系总吸收表面积与根数均减少。10 µmol L-1 ABA处理的水稻根尖生长异常,分生区和根冠发育不良,细胞伸长受抑,成熟区细胞变形使根局部膨胀,并改变了中央维管组织的发育。

关键词: 水稻, 根负向光性, IAA, GA3, ABA

Abstract:

The objective of this research was to investigate the relationship between rice roots negative phototropism and endogenous plant hormone levels, as well as the impact of exogenous hormones on rice root growth. The adventitious roots and primary roots of conventional cultivars Yangdao6 (indica), Nipponbare (japonica), Zhonghua11 (japonica) and its OsPIN1a over expressed transgenic seedlings were used to observe the process of root negative phototropism, measure contents of endogenous auxin (IAA), gibberellin (GA3) and abscisic acid (ABA) in the bending part of root tips, and investigate the impact of exogenous hormones to rice root morphology and anatomy. Results indicated that seedling roots of both Yangdao6 and Nipponbare had negative phototropism, and the lateral roots and adventitious roots of Yangdao6 showed stronger negative phototropism. Plant hormones and negative phototropism of rice root and root development are closely linked. Under unilateral illumination, endogenous IAA, GA3 and ABA levels declined. The content of these phytohormones in the irradiated side was lower than that in the shaded side. The treatment of unilateral light and exogenous IAA induced a large number of root hairs in Yangdao6. Compared with conventional rice, the angel of negative phototropism was lager in OsPIN1a transgenic plant. There was no direct relationship between exogenous GA3 and ABA treatments and root negative phototropism of rice. Exogenous ABA inhibited root growth obviously. The total absorption surface area, root number and root length per plant were significantly reduced by ABA treatment. The treatment of 10 μmol L-1ABA not only caused a dysplasia of both meristematic and elongation zone but also promoted the development of the central vascular tissue in root tips.

Key words: Rice, Root negative phototropism, IAA, GA3, ABA

[1]Fageria N K. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in low land rice. Commun Soil Sci Plan, 2003, 34: 259–270



[2]Davies P J. Plant Hormones: Biosynthesis, Signal Transduction, Action. London: Kluwer Academic Publishers, 2010. pp 27–28



[3]Wang Z, Mo Y, Qian S, Gu Y. Negative phototropism of rice root and its influencing factors. Sci China Ser C: Life Sci, 2002, 45: 485-496



[4]Mo Y, Wang Z, Qian S, Gu Y. Effect of indoleacetic acid (IAA) on the negative phototropism of rice root. Rice Sci, 2004, 11: 125–128



[5]汪月霞, 王忠, 刘全军, 赵会杰, 顾蕴洁, 钱晓旦, 袁志良. cpt1基因与水稻根负向光性运动的关系. 作物学报, 2009, 35: 1558–1561



Wang Y X, Wang Z, Liu Q J, Zhao H J, Gu Y J, Qian X D, Yuan Z L. Relationship between cpt1 gene and the negative phototropism in rice roots. Acta Agron Sin, 2009, 35: 1558–1561 (in Chinese with English abstract)



[6]Briggs W R. The phototropic responses of higher plants. Annu Rev Plant Physiol, 1963, 14: 311–352



[7]Evans M L. The action of auxin on plant cell elongation. CRC Crit Rev Plant Sci, 1985, 2: 317–365



[8]Harrison M A, Pickard B G. Auxin asymmetry during gravitropism by tomato hypocotyls. Plant Physiol, 1989, 89: 652–657



[9]Briggs W R. Phototropism: some history, some puzzles, and a look ahead. Plant Physiol, 2014, 164: 13–23



[10]Fleet C M, Sun T P. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol, 2005, 8: 77–85



[11]Bolle C. The role of GRAS proteins in plant signal transduction and development. Planta, 2004, 218: 683–692



[12]Cao D, Cheng H, Wu W, Soo H M, Peng J. Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol, 2006, 142: 509–525



[13]Kohli A, Sreenivasulu N, Lakshmanan P, Kumar P P. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep, 2013, 32: 945–957



[14]Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol, 2011, 14: 290–295



[15]Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid: emergence of a core signaling network. Ann Rev Plant Biol, 2010, 61: 651–679



[16]Sreenivasulu N, Harshavardhan V T, Govind G, Seiler C, Kohli A. Contrapuntal role of ABA: Does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene, 2012, 506: 265–273



[17]王忠, 李卫芳, 顾蕴洁, 陈刚, 石火英, 高煜珠. 水稻胚乳的发育及其养分输入的途径. 作物学报, 1995, 21: 520–527



Wang Z, Li W F, Gu Y J, Chen G, Shi H Y, Gao Y Z. Development of rice endosperm and the pathway of nutrients entering the endosperm. Acta Agron Sin, 1995, 21: 520–527 (in Chinese with English abstract)



[18]Li Y, Hagen G, Guilfoyle T J. An auxin-responsive promoter is differentially induced by auxin gradients during tropisms. Plant Cell, 1991, 3: 1167–1175



[19]Nagashima A, Suzuki G, Uehara Y, Saji K, Furukawa T, Koshiba T, Sekimoto M, Fujioka S, Kuroha T, Kojima M, Sakakibara H, Fujisawa N, Okada K, Sakai T. Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner. Plant J, 2008, 53: 516–529



[20]Hoecker U, Toledo-Ortiz G, Bender J, Quail P H. The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome P450 required for normal auxin homeostasis. Planta, 2004, 219: 195–200



[21]Sakai T, Haga K. Molecular genetic analysis of phototropism in Arabidopsis. Plant Cell Physiol, 2012, 53: 1517–1534



[22]Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Juan M, Iglesias-Pedraz, Kircher S, Schäfer E, Fu X, Fan L M, Deng X W. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 2008, 451: 475–479



[23]Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd N P. DELLAs contribute to plant photo morphogenesis. Plant Physiol, 2007, 143: 1163–1172



[24]Itoh H, Matsuoka M, Steber C M. A role for the ubiquitin-26S-proteasome pathway in gibberellin signaling. Trends Plant Sci, 2003, 8: 492–497



[25]Schwechheimer C. Understanding gibberellic acid signaling—are we there yet? Curr Opin Plant Biol, 2008, 11: 9–15



[26]Tsuchida-Mayama T, Sakai T, Hanada A, Uehara Y, Asami T, Yamaguchi S. Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. Plant J, 2010, 62: 653–662



[27]Piotrowska A, Bajguz A. Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry, 2011, 72: 2097–2112



[28]Sharp R E. Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ, 2002, 25: 211–222



[29]Zhang H, Han W, De Smet I, Talboys P, Loya R, Hassan A, Rong H, Jürgens G, Paul Knox J, Wang M H. ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. Plant J, 2010, 64: 764–774



[30]Chen C W, Yang Y W, Lur H S, Tsai Y G, Chang M C. A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol, 2006, 47: 1–13



[31]Chandler J W. Auxin as compère in plant hormone crosstalk. Planta, 2009, 231: 1–12



[32]Frigerio M, Alabad D, Pe´rez-Go´mez J, Garc?´a-Ca´rcel L, Phillips A L, Hedden P, Blázquez M A. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol, 2006, 142: 553–563



[33]Bjorklund S, Antti H, Uddestrand I, Moritz T, Sundberg B. Cross-talk between gibberellin and auxin in development of Populus wood: Gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J, 2007, 52: 499–511



[34]刘婧, 柳艳梅, Takano M, 王宝山, 谢先芝. 光敏色素影响赤霉素调控的水稻幼苗光形态建成特征. 科学通报, 2010, 55: 2384-2390



Liu J, Liu Y M, Takano M, Wang B S, Xie X Z. Involvement of phytochromes in gibberellin-mediated photomorphogenesis in rice seedlings. Chin Sci Bull, 2010, 55: 2384–2390 (in Chinese with English abstract)



[35]Rock C D, Sun X. Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh. Planta, 2005, 222: 98–106



[36]Yamaguchi M, Sharp R E. Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. Plant Cell Environ, 2010, 33: 590–603



[37]Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol, 2013, 197: 139–150

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!