欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2297-2305.doi: 10.3724/SP.J.1006.2012.02297

• 研究简报 • 上一篇    下一篇

大豆7S球蛋白α'亚基缺失及(a'+a)亚基双缺失品系的回交转育

宋波1,**,蓝岚1,**,田福东2,拓云1,白月1,姜自芹1,申丽威1,李文滨1,刘珊珊1,*   

  1. 1 东北农业大学农学院大豆生物学教育部重点实验室,黑龙江哈尔滨 150030; 2 内蒙古通辽市农业科学研究院,内蒙古通辽 028015
  • 收稿日期:2012-03-27 修回日期:2012-08-15 出版日期:2012-12-12 网络出版日期:2012-10-08
  • 通讯作者: 刘珊珊, E-mail:ars336699@yahoo.com.cn, Tel: 0451-55190521
  • 基金资助:

    本研究由国家自然科学基金项目(31071440, 30800625), 黑龙江省普通高等学校青年骨干支持计划项目(1155G12), 东北农业大学博士启动基金(2009RC47)和国家转基因生物新品种培育重大专项(2011ZX08004-004-006-002)项目资助。

Development of Soybean Lines with α'-Subunit or (α'+α)-Subunits Deficiency in 7S Globulin by Backcrossing

SONG Bo1,**,LAN Lan1,**,TIAN Fu-Dong2,TUO Yun1,BAI Yue1,JIANG Zi-Qin1,SHEN Li-Wei1,LI Wen-Bin1,LIU Shan-Shan1,*   

  1. 1 Soybean Research Institute of Northeast Agricultural University, Harbin 150030, China; 2 Agriculture Science Institute of Tongliao City, Tongliao 028015, China
  • Received:2012-03-27 Revised:2012-08-15 Published:2012-12-12 Published online:2012-10-08
  • Contact: 刘珊珊, E-mail:ars336699@yahoo.com.cn, Tel: 0451-55190521

摘要:

7S球蛋白α'α亚基是大豆种子贮藏蛋白的重要组分,是影响大豆营养价值与加工品质的重要因子,同时还是主要的大豆致敏原,降低它们的含量是大豆品质改良育种的最新研究热点之一。以日本育种材料7S球蛋白(α'+α)-亚基双缺失型日B为供体亲本,黑龙江省主栽大豆品种东农47为受体亲本,采用回交转育方法,将α'(α'+α)-亚基缺失特性导入东农47。结果表明,α'-缺失型(Cc)(α'+α)-双缺失型(Cd)品系均能正常生长、结实,并能稳定遗传;CcCd产量组分性状的平均值均远高于轮回亲本,蛋白质含量平均值均高于双亲,部分Cd株系籽粒蛋白质总量高达46.7%,脂肪含量平均值介于双亲之间,略高于日B;导入α'-缺失和(α'+α)双缺失性状后,绝大多数氨基酸组分含量和氨基酸总量提高,其中精氨酸和天门冬氨酸平均含量变幅最大。Cd株系籽粒含硫氨基酸含量(蛋氨酸与胱氨酸之和)及氨基酸总量分别比东农47高出0.115.56个百分点。说明通过常规育种重组α¢-缺失或(α'+α)-双缺失性状即可提高大豆含硫氨基酸含量,并提高其他氨基酸组分含量及氨基酸总量,在CcCdBC2F3后代群体中有望筛选到α'-缺失或α'α同时缺失的高产、高含硫氨基酸、优质大豆新品种。

关键词: 大豆, 致敏蛋白缺失, 高含硫氨基酸品系, 回交选育

Abstract:

Theα'- and α-subunits of 7S globulin, the components of soybean storage protein as well as the main allergens, are important factors affecting the nutritional and processing quality of soybean. It is currently focused to improve the quality of soybean variety by reducing the contents of α' and α-subunits in soybean breeding. In the experiment, we successfully recombined the character of allergenic proteins deficiency into Chinese soybean, using a Japanese variety “Ri B” with (α'+α)-subunits deficiency of 7S globulin (β-conglycinin) as the donor parent, and soybean variety Dongnong 47 with high oil content, wildly planted in Heilongjiang Province of China, as the recurrent parent. The results showed that the plants of α'-subunit-deficient lines (Cc) and (α'+α)-subunit-deficient lines (Cd) could normally grow, set seeds, and stably inherited. The average values of the yield traits in the two lines (Cc, Cd) increased compared with those in the recurrent parent Dongnong47. The average protein contents in the two lines were higher than those in the parents. The protein content reached to 46.7% in the Cd lines. The average oil content in Cc and Cd lines was ranged between that of both parents and a bit more than that of “Ri B”. Fat content in part lines was 20% more than that in Cc and Cd lines, respectively. Total Amino acid contents were increased by introducing a'-subunit and (a'+α)-subunit, amount of arginine (Arg) and asparagine (Asp) in two lines markedly increased. The sulfur-containing amino acid (Met and Cys) contents and the total amino acid content in Cd lines were 0.11% and 0.56% more than those in Dongnong 47, respectively. So the recombined lines have a great potential to enhance food safety and quality, and could be used in soybean breeding for quality.

Key words: Soybeans (Glycine max L. Merr.), Deficiency of allergenic proteins, High sulfur amino acids lines, Backcrossing

[1]Derbyshire E, Wright D B, Boulter D. Legumin and vicilin, storage proteins of legume seeds. Phytochem, 1976, 15: 3–24



[2]Hill J E, Breidenbach R W. Proteins of soybean seeds. I. Isolation and characterization of the major components. Plant Physiol, 1974, 53: 742–746



[3]Ogawa T, Tayama E, Kitamura K, Kaizuma N. Genetic improvement of seed storage proteins using three variant alleles of 7S globulin subunits in soybean (Glycine max L.). Jpn J Breed, 1989, 39: 137–147



[4]Krishnan H B. Engineering soybean for enhanced sulfur amino acid content. Crop Sci, 2005, 45: 454–461



[5]Than V H, Shibasaki K. Beta-conglycinin from soybean proteins. Isolation and immunological and physicochemical properties of the monomeric forms. Biochem Biophys Acta, 1977, 490: 370–384



[6]Staswick P E, Hermodson M A, Nielsen N C. Identification of the acidic and basic subunit complexes of glycinin. J Biol Chem, 1981, 256: 8752–8755



[7]Kaviani B, Kharabian A. Improvement of the nutritional value of soybean [Glycine max (L.) Merr.] seed with alteration in protein subunit of glycinin (11S globulin) and beta-conglycinin (7S globulin). Turk J Biol, 2008, 32: 91–97



[8]Tsukada Y, Kitamura K, Harada K, Kaizuma N. Genetic analysis of subunits of two major storage protein (β-conglycinin and glycinin) in soybean seeds. Jpn J Breed, 1986, 36: 390–400



[9]Koshiyama I. Chemical and physical properties of a 7S protein in soybean globulins. Cereal Chem, 1968, 45: 394–404



[10]Utsumi S, Kinsella J E. Forces involved in soy protein gelation: effects of various reagents on the formation, hardness and solubility of heat-induced gels made from 7S, 11S and soy isolate. J Food Sci, 1985, 50: 1278–1282



[11]Salleh M R B, Maruyama N, Takahashi K, Yagasaki K, Higasa T, Matsumura Y. Utsumi S. Gelling properties of soybean beta-conglycinin having different subunits compositions. Biosci Biotechnol Biochem, 2004, 68: 1091–1096



[12]Ogawa T, Bando N, Tsuji H, Nishikawa K, Kitamura K. Alpha-subunit of beta-conglycinin, an allergenic protein recognized by IgE antibodies of soybean-sensitive patients with atopic dermatitis. Biosci Biotechnol Biochem, 1995, 59: 831–833



[13]Ogawa T, Samoto M, Takahashi K. Soybean allergens and hypoallergenic soybean products. J Nutr Sci Vitaminol, 2000, 46: 271–279



[14]Krishnan H B, Kim W S, Jang S, Kerley M S. All three subunit of soybean beta-conglycinin are potential food allergens. J Agric Food Chem, 2009, 57: 938–943



[15]Samoto M, Fukuda Y, Takahashi K, Tabuchi K, Hiemori M, Tsuji H, Ogawa T, Kawamura Y. Substantially complete removal of three major allergenic soybean proteins (Glym Bd 30K, Glym Bd 28, and the alpha-subunit of β-conglycinin) form soy protein by using a mutant soybean, Tohoku 124. Biosci Biotechnol Biochem, 1997, 61: 2148–2150



[16]Thanh V H, Shibasaki K. Heterogeneity of beta-conglycinin from soybean seeds. Biochem Biophys Acta, 1976, 439: 326–338



[17]Thanh V H, Shibasaki K. Major proteins of soybean seeds: Subunit structure of beta-conglycinin. J Agric Food Chem, 1978, 26: 692–695



[18]Higgins T J V. Synthesis and regulation of major proteins in seeds. Annu Rev Plant Physiol, 1984, 35: 191–221



[19]Kitamura K, Kaizuma N. Mutant strains with low level of subunit of 7S globulin in soybean (Glycine max Merr.) seed. Jpn J Breed, 1981, 31: 353–359



[20]Harada K, Toyokawa Y, Kitamura K. Genetic analysis of the most acidic 11S globulin subunit and related characters in soybean seeds. Jpn J Breed, 1983, 33: 23–30



[21]Kaizuma N, Kowata H, Odanaka H. Genetic variation on soybean seed proteins induced by irradiation. Rep Tohoku Br Crop Sci Japan,1989, 32: 97–99



[22]Odanaka H, Kaizuma N. Mutants on soybean storage proteins induced by γ-ray irradiation. Jpn J Breed, 1989, 39 (Suppl. 1): 430–431 (in Japanese)



[23]Kitagawa S, Ishimoto M, Kikuchi F, Kitamura K. A characteristic lacking or decreasing remarkably 7S globulin subunits induced with γ–ray irradiation in soybean seeds. Jpn J Breed, 1991, 41(Suppl 2): 460–461 (in Japanese)



[24]Takahashi K, Banda H, Kikuchi A, Ito M, Nakamura S. An induced mutant line lacking the a-subunit of β-conglycinin in soybean[Glycine max (L.)Merr]. Breed Sci, 1994, 44: 65–66



[25]Yagasaki K, Kaizuma N, Kitamura K. Inheritance of glycinin subunits and characterization of glycinin molecules lacking the subunits in soybean (Glyxine max (L.) Merr.). Breed Sci, 1996, 46: 11–15



[26]Takahashi K, Mizuno Y, Yumoto S, Kitamura K, Nakamura S. Inheritance of the a-subunit deficiency of β-conglycinin in soybean [Glycine max (L.)Merrill] line induced by γ-ray irradiation. Breed Sci, 1996, 46: 251–255



[27]Hajika M, Takahashi M, Sakai S, Igita M. A new genotype of 7S globulin (β-conglycinin) detected in wild soybean (Glycine soja Sieb.et Zucc.). Breed Sci, 1996, 46: 385–386



[28]Hayashi M, Harada K, Fujiwara T, Kitamura K. Characterization of a 7S globulin-deficient mutant of soybean (Glycine max L. Merrill). Mol Gen Genet, 1998, 258: 208–214



[29]Liu S-S(刘珊珊), Teng W-L(滕卫丽), Zhang B-B(张彬彬), Ge Y-J(葛玉君), Diao G-Z(刁桂珠), Zheng T-H(郑天慧), Jiang Z-Q(姜自琴), Zeng R(曾蕊), Wu S(吴帅), Li W-B(李文滨). Development of soybean germplasm lacking of 7S globulin α-subunit. Acta Agron Sin (作物学报), 2010, 36 (8): 1–5 (in Chinese with English abstract)



[30]Coates J B, Medeiros J S, Thanh V H, Nielsen N C. Characterization of the subunits of β- conglycinin. Arch Biochem Biophys, 1985, 243: 184–194



[31]Herman E M, Helm R M, Jung R, Kinney A J. Genetic modification remove an immunodominant allergen from soybean. Plant Physiol, 2003, 132: 36–43



[32]Yagasaki K, Takagi T, Sakai M, Kitamura K. Biochemical characterization of soybean protein consisting of different subunits of glycinin. J Agric Food Chem, 1997, 45: 656–660



[33]Takahashi M, Uematsu Y, Kashiwaba K, Yagasaki K, Hajika M, Matsunaga R, Komatsu K, Ishimoto M. Accumulations of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta, 2003, 217: 577–586



[34]Kita Y, Nakamoto Y, Takahashi M, Kitamura K, Wakasa K, Ishimoto M. Manipulation of amino acid composition in soybean seeds by the combination of deregulated tryptophan biosynthesis and storage protein deficiency. Plant Cell Rep, 2010, 29: 87–95

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!