欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2286-2296.doi: 10.3724/SP.J.1006.2012.02286

• 研究简报 • 上一篇    下一篇

芝麻种质资源SSR标记遗传多样性与群体结构

岳文娣1,魏利斌2,张体德2,李春2,苗红梅2,张海洋2,*   

  1. 1 南京农业大学 / 作物遗传与种质创新国家重点实验室, 江苏南京 210095; 2河南省农业科学院河南省芝麻研究中心, 河南郑州 450002
  • 收稿日期:2012-04-24 修回日期:2012-09-05 出版日期:2012-12-12 网络出版日期:2012-10-08
  • 通讯作者: 张海洋, E-mail: zhy@hnagri.org.cn, Tel: 0371-65715936
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB109304)和现代农业产业技术体系建设专项(CARS-15)资助。

Genetic Diversity and Population Structure of Germplasm Resources in Sesame (Sesamum indicum L.) by SSR Markers

YUE Wen-Di1,WEI Li-Bin2,ZHANG Ti-De2,LI Chun2,MIAO Hong-Mei2,ZHANG Hai-Yang2,*   

  1. 1 National Key Laboratory of Crop Genetics and Germplasm Enhancement / Nanjing Agricultural University, Nanjing 210095, China; 2 Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
  • Received:2012-04-24 Revised:2012-09-05 Published:2012-12-12 Published online:2012-10-08
  • Contact: 张海洋, E-mail: zhy@hnagri.org.cn, Tel: 0371-65715936

摘要:

利用42对具明显多态性的SSR引物, 分析国内外545份芝麻品种的遗传多样性和群体结构。结果检测到106个等位变异位点, 引物多态位点范围为3~9, 平均为3.8/引物, Y1994引物的等位位点最多, 9个。引物Shannon信息指数(I)范围为1.4834~0.1233, 平均值为0.6450; 多态信息指数(PIC)范围为0.7481~0.0516, 平均值为0.4092, 平均杂合度(He)0.1162UPGMA聚类、二元主成分及群体结构分析结果基本一致; 供试545份芝麻资源可被分为3UPGMA组群, 在群体结构上分为3个亚群; 芝麻资源整体遗传分化较小, 亲缘关系较近。中国7个生态群种质相似系数范围为0.9811~0.5462, 东北西北等区域资源与黄淮、江汉、华中华南等区的亲缘关系较远; 国外7个生态群相似系数为0.9726~0.7442, 非洲区与日本区种质亲缘关系较近, 与中国资源亲缘关系较远。中国种质资源遗传基础较为狭窄, 遗传多样性与地理分布不完全相关, 而国外资源遗传多样性丰富。在今后芝麻育种工作中, 应加强国外资源的引进与利用, 并注重国内不同类群资源利用, 拓宽我国芝麻品种遗传基础。

关键词: 芝麻, 种质资源, SSR标记, 遗传多样性, 群体结构

Abstract:

A total of 545 sesame accessions, including domestic and foreign germplasm resources, were analyzed systematically with 42 SSR primer pairs. The results showed that 106 allele bands were detected among the sesame accessions, and the Shannon’s information index (I) was 0.4092. Analysis results of UPGMA clustering, two-dimension principal components and population structure were basically consistent; 545 varieties were divided into three groups in UPGMA dentrogram or three subgroups in population structure. There were the lower genetic differentiation coefficient and the closer sibship in worldwide sesame. The similarity coefficient of seven ecological groups in China ranged from 0.9811 to 0.5462, and there was no close genetic relationship between varieties from northern regions and other regions in China. The similarity coefficients for foreign varieties were from 0.9726 to 0.7442, and the genetic relationships of varieties from Africa zone was close to those from Japan zone, but not from China. It showed that the genetic basis of varieties from China was relatively narrow, and the genetic diversities of varieties were not completely related to geopraphic distribution, but the genetic diversities of varieties from abroad presented abundance. Therefore, the introduction of foreign resources should be reinforced, and the domestic resources from different regions should be utilized in the future sesame breeding.

Key words: Sesamum indicum.L, Germplasm resource, SSR marker, Genetic diversity, Population structure

[1]Bedigian D, Harlan J. Evidence for cultivation on sesame in the ancient world. Econ Bot, 1986, 40: 137–154



[2]Ashri A. Sesame breeding. Plant Breed Rev, 1998, 16: 179–228



[3]Bisht I S, Mahajan R K, Loknathan T R, Agrawal R C. Diversity in Indian sesame collection and stratification of germplasm accessions in different diversity groups. Genet Resour Crop Evol, 1998, 45: 325–335



[4]Shen J-X(沈金雄), Guo Q-Y(郭庆元), Zhang X-R(张秀荣), Zhao Y-Z(赵应忠), Feng X-Y(冯祥运), Chen H-X(陈和兴), Wu X-M(伍晓明). Cluster analysis of sesame germplasm collection in China. Huazhong Agric Univ (华中农业大学学报), 1995, 14(6): 532–536 (in Chinese with English abstract)



[5]Shiro I, Teruhisa U. Genetic variations of isozymes in cultivated sesame (Sesamum indicum L.). Euphytica, 1997, 93: 375–377



[6]Zhao Y-Z(赵应忠), Liu H-Y(刘红艳). Genetic distance and heterosis between male sterile lines and core collection in sesame. Chin J Oil Crop Sci (中国油料作物学报), 2005, 27(1): 36–40 (in Chinese with English abstract)



[7]Zhang P(张鹏), Zhang H-Y(张海洋), Zheng Y-Z(郑永战), Guo W-Z(郭旺珍), Wei L-B(魏利斌). Factor and cluster analysis of sesame (Sesamum indicum L.) germplasm resources. Chin J Oil Crop Sci (中国油料作物学报), 2008, 30(1): 71–78 (in Chinese with English abstract)



[8]Zhang X-R(张秀荣), Chen K-R(陈坤荣), Peng J(彭俊), Xu Z-Y(许泽永). The RAPD analysis and genetic diversity of selected sesame germplasms. Chin J Oil Crop Sci (中国油料作物学报), 2004, 26(4): 34–37 (in Chinese with English abstract)



[9]Gulhan E A, Melih T, Kenan T. Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Genet Resour Crop Evol, 2004, 51: 599–607



[10]Che Z(车卓), Zhang Y-X(张艳欣), Sun J(孙建), Zhang X-R(张秀荣), Shang X-W(尚勋武), Wang H-J(王化俊). Genetic diversity analysis of black sesame (Sesamum indicum DC.) core collection of China using SRAP markers. Acta Agron Sin (作物学报), 2009, 35(10): 1936–1941 (in Chinese with English abstract)



[11]Cho Y, Park J. Evaluation of the genetic diversity and population structure of sesame (Sesamum indicum L) using microsatellite markers. Genes & Genom, 2011, 33: 187–195



[12]Kim D H, Zur G, Danin P Y, Lee S W, Shim K B, Kang C W, Kashi Y. Genetic relationships of sesame germplasm collection as revealed by inter-simple sequence repeats. Plant Breed, 2002, 121: 259–262



[13]Hernán E L, Petr K. Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genet, 2006, 7: 10



[14]Wei L B, Zhang H Y, Zheng Y Z, Miao H M, Zhang T Z, Guo W Z. A genetic linkage map construction for sesame (Sesamum indicum L.). Genes & Genom, 2009, 31(2): 199–208



[15]Chen C-Y(陈翠云), Feng X-Y(冯祥运). Sesame Germplasm Resources in China (中国芝麻品种志). Beijing: Agriculture Press, 1990. pp 1–17 (in Chinese)



[16]Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol, 1999, 11: 122–127



[17]Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128–2129



[18]Pritchard J K, Stephens M, Donnelly P.2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945–959



[19]Rohlf F J. NTSYSpc: Numerical Taxonomy System, Ver.2.20. Setauket, NY, USA: Exeter Publishing Ltd., 2008



[20]Yeh F C, Boyle T J B. Population genetic analysis of codominant and dominant markers and quantitative traits. Belg J Bot, 1997, 129: 157



[21]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599



[22]Xiao J, Li J, Yuan L, McCouch S R, Tanksley S D. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers, Theor Appl Genet. 1996, 92: 637–643



[23]Liu Z W, Biyashev R M, Saghai Maroof M A. Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet, 1996, 93: 869–876



[24]McCouch S R, Lu H, Rutger J N, Coburn J R, Tai T H. Population structure and breeding patterns of 145 US rice cultivars based on SSR marker analysis, Crop Sci, 2005, 45: 66–76



[25]Zhang P(张鹏), Zhang H-Y(张海洋), Guo W-Z(郭旺珍), Zheng Y-Z(郑永战), Wei L-B(魏利斌), Zhang T-Z(张天真). Genetic diversity analysis of Sesamum indicum L. germplasms using SRAP and SSR markers. Acta Agron Sin (作物学报), 2007, 33(10): 1696–1702 (in Chinese with English abstract)



[26]Zhang Y-X(张艳欣), Zhang X-R(张秀荣), Che Z(车卓), Wang L-H(王林海). Genetic diversity analysis of core collection of white coat sesame seed (Sesamum indicum L.) in China using SRAP markers. Chin J Oil Crop Sci (中国油料作物学报), 2010, 32(1): 46–52 (in Chinese with English abstract)



[27]Laurentin H E, Karlovsky P. Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genet, 2006, 7: 10



[28]Erca A G, Taskin M, Turgut K. Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Genet Resour Crop Evol, 2004, 51: 599–607

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[3] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[4] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[5] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[6] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[7] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[8] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[9] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[10] 孙志广, 王宝祥, 周振玲, 方磊, 迟铭, 李景芳, 刘金波, Bello Babatunde Kazeem, 徐大勇. 水稻萌发耐淹性种质资源筛选及QTL定位[J]. 作物学报, 2021, 47(1): 61-70.
[11] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[12] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[13] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[14] 张晓军,肖进,王海燕,乔麟轶,李欣,郭慧娟,常利芳,张树伟,阎晓涛,畅志坚,武宗信. 小偃麦衍生品系的赤霉病抗性评价[J]. 作物学报, 2020, 46(01): 62-73.
[15] 郜欢欢,叶桑,王倩,王刘艳,王瑞莉,陈柳依,唐章林,李加纳,周清元,崔翠. 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选[J]. 作物学报, 2019, 45(9): 1416-1430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!