欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (04): 649-656.doi: 10.3724/SP.J.1006.2013.00649

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗细茎野生种核心种质构建

齐永文,樊丽娜,罗青文,王勤南,陈勇生,黄忠兴,刘睿,刘少谋,邓海华*,李奇伟*   

  1. 广州甘蔗糖业研究所 / 广东省甘蔗改良与生物炼制重点实验室, 广东广州 510316
  • 收稿日期:2012-09-18 修回日期:2012-12-12 出版日期:2013-04-12 网络出版日期:2013-01-28
  • 通讯作者: 李奇伟, E-mail: liqiwei66@163.com, Tel: 020-84168478; 邓海华, E-mail: haihuadeng@126.com, Tel: 020-84178327
  • 基金资助:

    本研究由国家自然科学基金项目(30800700), 国家现代农业产业技术体系建设专项(CARS-20-1-4)和广东省科技计划项目(2011B060400019)资助。

Establishment of Saccharum spontaneum L. Core Collections

QI Yong-Wen,FAN Li-Na,LUO Qing-Wen,WANG Qin-Nan,CHEN Yong-Sheng,HUANG Zhong-Xing,LIU Rui,LIU Shao-Mou,DENG Hai-Hua*,LI Qi-Wei*   

  1. Guangdong Key Laboratory of Sugarcane Improvement and Biorefine, Guangzhou Sugarcane Industry Research Institute, Guangzhou 510316, China
  • Received:2012-09-18 Revised:2012-12-12 Published:2013-04-12 Published online:2013-01-28
  • Contact: 李奇伟, E-mail: liqiwei66@163.com, Tel: 020-84168478; 邓海华, E-mail: haihuadeng@126.com, Tel: 020-84178327

摘要:

以来自我国10个省()、自治区的540份甘蔗细茎野生种无性系为材料,根据采集地信息及其在20SSR引物上的分子标记数据和15个表型性状资料,开展核心种质构建研究。不同取样量(5%10%20%30%40%50%60%70%80%90%)分析表明,10%的取样比例可获得70%以上的变异保留比例,是较好的核心种质取样规模;对5种采集地分组取样策略(等量法、简单比例法、平方根比例法、对数比例法和多样性比例法)2种无分组取样策略(最大变异保留法和随机抽样法)比较表明,简单比例法获得的核心种质代表性最好,为最优取样策略。最后,在简单比例法取样筛选出的54份核心样品中,又通过定向选择补充了6份具有优异表型性状的材料,构建了含60份无性系的甘蔗细茎野生种核心种质,分子和表型检验都表明本研究所构建的核心种质具有较好的代表性和遗传多样性。

关键词: 甘蔗细茎野生种, 核心种质, SSR, 表型性状

Abstract:

Five hundred and forty accessions of Saccharum spontaneum L. from ten provinces of China were characterized by geographical information, molecular markers on 20 SSRs and 15 agro-morphological traits to establish a core collection. Ten different sampling ratios of accessions were tested, including 5% and 10% to 90% with an interval of 10%. The results showed that 10% of samples could conserve more than 70% of variations, which indicated that 10% was an adequate sampling ratio for establishing the core collection. A comparison of the efficiencies of five sampling strategies by geographical grouping (constant, proportional, square root, logarithmic, and genetic diversity-depend) and two non-grouping sampling strategies (maximization and random sampling), indicated proportional strategy was optimal in term of establishing the most representative core collection. Thus, a core collection of 60 accessions, including 54 selected based on proportional strategy and six accessions selected by their specific agro-morphological traits, was constructed. The tests on SSR data and agro-morphological characters demonstrated that the core collection have high genetic diversity and a good representative to the entire collection.

Key words: Saccharum spontaneum L., Core collection, SSR, Agro-morphological traits

[1]Bremer G. Problems in breeding and cytology of sugar cane. Euphytica , 1961, 10, 59–78



[2]Glaszmann J C, Fautret A, Noyer J L, Feldmann P, Lanaud C. Biochemical genetic markers in sugarcane. Theor Appl Genet, 1989, 78: 537–543



[3]D'Hont A, Lu Y H, Feldmann P, Glaszmann J C. Cytoplasmic diversity in sugarcane revealed by heterologous probes. Sugarcane, 1993, 1:12–15



[4]Mary S, Nair N, Chaturvedi P K, Selvi A. Analysis of genetic diversity among Saccharum spontaneum L. from four geographical regions of India, using molecular markers. Genet Resour Crop Evol, 2006, 53: 1221–1231



[5]Pan Y B. Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech, 2006, 8: 246–256



[6]Zhang G M, Li Y R, He W Z, He H, Liu X H, Song H Z, Liu H B, Zhu R C, Fang W K. Analysis of the genetic diversity in Saccharum spontaneum L. accessions from Guangxi Province of China with RAPD-PCR. Sugar Tech, 2010, 12: 31–35



[7]Frankel O H. Genetic perspectives of germplasm conservation. In: Arber W, Llimensee K, Peacock W J, Starlinger P, eds. Symposium on Genetic Manipulation: Impact on Man and Society. Cambridge, UK: Cambridge University Press, 1984. pp 161–170



[8]Brown A H D. Core collections: a practical approach to genetic resources management. Genome, 1989, 31: 818–824



[9]Brown A H D. The case for core collections. In: Brown A H D, Frankel O H, Marshall D R, Willims J T, eds. The Use of Plant Genetic Resources. Cambridge, UK: Cambridge University Press, 1989. pp 136–156



[10]Zhang H L, Zhang D L, Wang M X, Sun J L, Qi Y W, Li J J, Wei X H, Han L Z, Qiu Z, Tang S X, Li Z C. A core collection and mini core collection of Oryza sativa L. in China. Theor Appl Genet, 2011, 122: 49–61



[11]Qiu L-J(邱丽娟), Li Y-H(李英慧), Guan R-X(关荣霞), Liu Z-X(刘章雄), Wang L-X(王丽侠), Chang R-Z(常汝镇). Establishment, representative testing and research progress of soybean core collection and mini core collection. Acta Agron Sin (作物学报), 2009, 35(4): 571–579 (in Chinese with English abstract)



[12]Balakrishnan R, Nair N V, Sreenivasan T V. A method for establishing a core collection of Saccharum officinarum germplasm based on quantitative morphological data. Genet Resour Crop Evol, 2000, 47: 1–9



[13]Tai P Y P, Miller J D. A core collection for Saccharum spontaneum L. from the world collection of sugarcane. Crop Sci, 2001, 41: 879–885



[14]Amalraj V, Balakrishnan R, Jebadhas A, Balasundaram N. Constituting a core collection of Saccharum spontaneum L. and comparison of three stratified random sampling procedures. Genet Resour Crop Evol, 2006, 53: 1563–1572



[15]Chen H(陈辉), Fan Y-H(范源洪), Shi X-W(史宪伟), Cai Q(蔡青), Zhang M(张明), Zhang Y-P(张亚平). Research on genetic diversity and systemic evolution in Saccharum spontaneum L. Acta Agron Sin (作物学报), 2001, 27(5): 645–652 (in Chinese with English abstract)



[16]Deng H-H(邓海华). Pedigree analysis of the native spontaneum-derived varieties of sugarcane in mainland China. Guandong Agric Sci (广东农业科学), 2012, 39(8): 167–170 (in Chinese with English abstract)



[17]Lao F-Y(劳方业), Liu R(刘睿), He H-Y(何慧怡), Deng H-H(邓海华), Chen Z-H(陈仲华), Chen J-W(陈健文), Fu C(符成), Zhang C-M(张垂明), Yang Y-H(杨业后). AFLP analysis of genetic diversity in series sugarcane parents developed at HSBS. Mol Plant Breed (分子植物育种), 2008, 6(3): 517–522 (in Chinese with English abstract)



[18]Cai Q(蔡青), Fan Y-H(范源洪). Technical Code for Evaluating Germplasm Resources-Sugarcane (Saccharum L.) (甘蔗种质资源鉴定技术规程). Beijing: China Agriculture Press, 2008



[19]Besse P, Mcintyre C L, Berding N. Ribosomal DNA variations in Erianthus, a wild sugarcane relative (Andropogoneae-Saccharinae). Theor Appl Genet, 1996, 92: 733–743



[20]Cordeiro G M, Taylor G O, Henry R J. Characterisation of microsatellite markers from sugarcane (Saccharum spp.), a highly polymorphic species, Plant Sci, 2000, 155: 161–168



[21]Pan Y B. Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing, Sugar Tech, 2006, 8: 246–256



[22]Pinto L R, Oliveira K M, Ulian E C, Garcia A A F, de Souza A P. Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome, 2004, 47: 795–804



[23]Fan L-N(樊丽娜), Li Y(李昱), Luo Q-W(罗青文), Lao F-Y(劳方业), Wang Q-N(王勤南), He H-Y(何慧怡), Chen Y-G(陈月桂), Deng H-H(邓海华), Li Q-W(李奇伟), Qi Y-W(齐永文). Genetic diversity of Saccharum spontaneum L. from Guangdong province analyzed based on SSR markers. Mol Plant Breed (分子植物育种), 2012, 10(46): 1338–1345 (in Chinese with English abstract)



[24]Bassam B J, Caetano-Anolles G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 1991, 196: 80-83



[25]Gouesnard B, Bataillon T M, Decoux G, Rozale C, Schoen D J, David J L. MSTRAT: An algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. Heredity, 2001, 92: 93–94



[26]Su H-S(苏火生), Liu X-L(刘新龙), Mao J(毛钧), Ying X-M(应雄美), Lu X(陆鑫), Ma L(马丽), Fan Y-H(范源洪), Cai Q(蔡青). Sampling strategy of pre-core collection for Saccharum spontaneum. J Hunan Agric Univ (湖南农业大学学报), 2011, 37(3): 253–259 (in Chinese with English abstract)



[27]Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21(9): 2128–2129



[28]Zhang H-L(张洪亮), Li Z-C(李自超), Cao Y-S(曹永生), Qiu Z-E(裘宗恩), Yu P(余萍), Wang X-K(王象坤). Comparison of parameters for testing the rice core collection in phenotype. Acta Agron Sin (作物学报), 2003, 29(2): 252–257 (in Chinese with English abstract)



[29]Hu J, Zhu J, Xu H M. Methods of constructing core collection by stepwise cluster with three sampling strategies based on genotypic values of crops. Theor Appl Genet, 2000, 101: 264–268



[30]Rohlf F J. Numerical Taxonomy and Multivariate Analysis System, Version 2.1, User Guide. Exeter Software, New York, 2000



[31]Belaj A, Dominguez-García M C, Atienza S G, Urdíroz N M, De la Rosa R, Satovic Z, Martín A, Kilian A, Trujillo I, Valpuesta V, Del Río C. Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes, 2012, 8: 365–378



[32]Chen C L, Li L F, Wu S Z. Chromosome number distribution of Saccharum spontaneum in the southwest region of China. Intl Sugar J, 1981, 83: 264–267



[33]Chang D, Yang F Y, Yan J J, Wu Y Q, Bai S Q, Liang X Z, Zhang Y W, Gan Y M. SRAP analysis of genetic diversity of nine native populations of wild sugarcane, Saccharum spontaneum from Sichuan, China. Genet Mol Res, 2012, 11: 1245–1253

[1] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[2] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[3] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[4] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[5] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[6] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[7] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[8] 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642.
[9] 闫彩霞,王娟,张浩,李春娟,宋秀霞,孙全喜,苑翠玲,赵小波,单世华. 基于表型性状构建中国花生地方品种骨干种质[J]. 作物学报, 2020, 46(4): 520-531.
[10] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[11] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[12] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[13] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[14] 徐益,张列梅,郭艳春,祁建民,张力岚,方平平,张立武. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11): 1672-1681.
[15] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!