欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (09): 1576-1581.doi: 10.3724/SP.J.1006.2013.01576

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

抗全蚀病、根腐病的转PgPGIP1基因小麦的获得与鉴定

杨丽华1,2,王金凤2,杜丽璞2,徐惠君2,魏学宁2,李钊2,马翎健1,*,张增艳2,*   

  1. 1西北农林科技大学农学院,陕西杨凌 712100;2中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 /农业部麦类生物学与遗传育种重点实验室,北京 100081
  • 收稿日期:2013-02-20 修回日期:2013-06-09 出版日期:2013-09-12 网络出版日期:2013-07-09
  • 通讯作者: 马翎健, E-mail: malingjian@nwsuaf.edu.cn; 张增艳, E-mail: zhangzengyan@caas.cn
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2011ZX08002-001和2013ZX08002-001)资助。

Generation and Characterization of PgPGIP1 Transgenic Wheat Plants with Enhanced Resistance to Take-All and Common Root Rot

YANG Li-Hua1,2,WANG Jin-Feng2,DU Li-Pu2,XU Hui-Jun2,WEI Xue-Ning2,LI Zhao2,MA Ling-Jian1,*,ZHANG Zeng-Yan2,*   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 National Key Facility of Crop Gene Resources and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2013-02-20 Revised:2013-06-09 Published:2013-09-12 Published online:2013-07-09
  • Contact: 马翎健, E-mail: malingjian@nwsuaf.edu.cn; 张增艳, E-mail: zhangzengyan@caas.cn

摘要:

全蚀病和根腐病是小麦(Triticum aestivum)重要的土传真菌病害。PgPGIP1是人参(Panax ginseng)的一种多聚半乳糖醛酸酶抑制蛋白,可以抑制部分病原真菌分泌的多聚半乳糖醛酸酶的活性。本研究人工合成了PgPGIP1基因,并构建PgPGIP1基因的单子叶植物表达载体pA25-PgPGIP1,通过基因枪介导法将其转入小麦品种扬麦18中。对转PgPGIP1基因的T0T4代植株进行PCRRT-PCRQ-RT-PCR分析,并对其全蚀病和根腐病抗性进行鉴定。结果表明,PgPGIP1基因能够在4个转基因小麦株系中遗传、转录与表达。与未转基因的小麦扬麦18相比,4个转基因小麦株系对全蚀病与根腐病的抗性明显提高,说明PgPGIP1表达增强了转基因小麦对全蚀病与根腐病的抗性

关键词: 人参多聚半乳糖醛酸酶抑制蛋白, 转基因小麦, 全蚀病, 根腐病, 抗性

Abstract:

Take-all disease is primarily caused by a soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt). The disease common root rot is mainly caused by fungal pathogen Bipolaris sorokiniana (teleomorph Cochliobolus sativus). Both of them are important diseases of wheat (Triticum aestivum L.)worldwide. PgPGIP1, a polygalacturonase-inhibiting protein from Panax ginseng, can reduce the infection of some fungal phytopathogens through inhibiting the polygalacturonase activity of the pathogens. In this study, the full-length coding sequence of PgPGIP1 gene was synthesized, and the gene transformation vector pA25-PgPGIP1 was constructed. In the expression vector pA25-PgPGIP1, the PgPGIP1 gene can be expressed highly in monocot plants driving by maize ubiquitin promoter. Embryo callus of Yangmai 18 was bombarded by the gold particle containing pA25-PgPGIP1. The transgenic wheat plants from T0 to T4 generations were subjected to PCR, RT-PCR, and Q-RT-PCR assays. Results showed that the PgPGIP1 gene was indeed introduced into four transgenic wheat lines, and inherited from T0 to T4 generations and expressed. After inoculation with Ggt and B. sorokiniana, the disease evaluations  showed that the four transgenic wheat lines expressing PgPGIP1 displayed an enhanced resistances to take-all and common root rot compared with untransformed Yangmai 18.

Key words: Polygalacturonase-inhibiting protein (PGIP) in Panax ginseng, Transgenic wheat plants, Take-all, Common root rot, Resistance

[1]Zhang X-S(张雪松), Cao Y-S(曹永胜), Cao K-Q(曹克强). Management of w heat soil-borne diseases under the conservative farming system. J Northwest Sci-Tech Univ A&F (Nat Sci Edn) (西北农林科技大学学报?自然科学版), 2005, 33(suppl): 47–48 (in Chinese with English abstract)



[2]Daval S, Lebreton L, Gazengel K, Boutin M, Guillerm-Erckelboudt A Y, Sarniguet. The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. Mol Plant Pathol, 2011, 12: 839–854



[3]Guilleroux M, Osbourn A. Gene expression during infection of wheat roots by the ‘take-all’ fungus Gaeumannomyces graminis. Mol Plant Pathol, 2004, 5: 203–216



[4]Cook R J. Take-all of wheat. Physiol Mol Plant Pathol, 2003, 62: 73–86



[5]Gutteridge R J, Bateman G L, Todd A D. Variation in the effects of take-all disease on grain yield and quality of winter cereals in ?eld experiments†. Pest Manag Sci, 2003, 59: 215–224



[6]Yang M M, Mavrodi D V, Mavrodi O V, Bonsall R F, Parejko J A, Paulitz T C, Thomashow L S, Yang H T, Weller D M, Guo J H. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Biol Control, 2011, 101: 1481–1491



[7]Jiang W(蒋雯), He D(何德), Tao S(陶松). Research progress of resistance to w heat root rot using exogenous gene. J Hebei Agric Sci(河北农业科学), 2010, 14(2): 50–51(in Chinese with English abstract)



[8]Kumar J, Schäfer P, Hückelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Kogel K H. Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol, 2002, 3:185–195



[9]Jia T-X(贾廷祥), Wu G-B(吴桂本), Liu C-D(刘传德). The present research situation and control countermeasure of root rots in wheat. Sci Agric Sin (中国农业科学), 1995, 28(3): 41–48 (in Chinese with English abstract)



[10]Matteo A D, Federici L, Mattei B, Salvi G, Johnson K A, Savino C, Lorenzo G D, Tsernoglou D, Cervone F. The crystal structure of polygalacturonase- inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proc Natl Acad Sci USA, 2003, 100: 10124–10128



[11]Jiang H(蒋豪), Tang H-R(汤浩茹). Advance in the research of molecular characterization, expression and regulation of a gene encoding the polygalacturonase-inhibiting protein (PGIP) of plant. Chin Agric Sci Bull (中国农学通报), 2008, 24(8): 63–68 (in Chinese with English abstract)



[12]Janni M, Sella L, Favaron F, Blechl A E, Lorenzo G D, Ovidio R D. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant-Microbe Interactions, 2008, 21: 171–177



[13]Albersheim P, Anderson A J. Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci USA, 1971, 68: 1815–1819



[14]Sathiyaraj G, Srinivasan S, Subramanium S, Kim Y J, Kim Y J, Kwon W S, Yang D C. Polygalacturonase inhibiting protein: isolation, developmental regulation and pathogen related expression in Panax ginseng C.A. Meyer. Mol Biol Rep, 2010, 37: 3445–3454



[15]Xu H-J(徐惠君), Pang J-L(庞俊兰), Ye X-G(叶兴国), Du L-P(杜丽璞), Li L-C(李连城), Xin Z-Y(辛志勇), Ma Y-Z(马有志), Chen J-P(陈剑平), Chen J(陈炯), Cheng S-H(程顺和), Wu H-Y(吴宏亚). Study on the gene transferring of Nib8 into wheat for its resistance to the Yellow mosaic virus by bombardment. Acta Agron Sin (作物学报), 2001, 27(6): 688–694 (in Chinese with English abstract)



[16]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8019



[17]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402–408



[18]Dong J-L (董建力), Hui H-X(惠红霞), Huang L-L(黄丽丽), Wang J-D(王敬东), Zhu Y-X(朱永兴), Chen X(陈孝), Ye X-G(叶兴国). Optimization of identification technique and germplasm screening of resistance to take-all in wheat. J Northwest A&F Univ (Nat Sci Edn) (西北农林科技大学学报?自然科学版), 2009, 37(3): 159–162 (in Chinese with English abstract)



[19]Bithell S L, Bulter R C, Harrow S, Mckay A, Cromey M G. Susceptibility to take-all of cereal and grass species, and their effects on pathogen inoculum. Ann Appl Biol, 2011, 159: 252–266



[20]Dong N, Liu X, Lu Y, Du L P, Xu H J, Liu H X, Xin Z Y, Zhang Z Y. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct Integr Genomic, 2010, 10: 215–226



[21]Dang L(党良), Wang A-Y(王爱云), Xu H-J(徐惠君), Zhu X-L(祝秀亮), Du L-P(杜丽璞), Shao Y-J(邵艳军), Zhang Z-Y(张增艳). Development and characterization of GmPGIP3 transgenic Yangmai 18 with enhanced resistance to wheat common root rot. Acta Agron Sin (作物学报), 2012, 38(10): 1833–1838 (in Chinese with English abstract)

[1] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[2] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[3] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[4] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[5] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[6] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[7] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[8] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[9] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[10] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[11] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[12] 陈同睿, 罗艳君, 赵潘婷, 贾海燕, 马正强. 过表达TaJRL53基因提高了小麦赤霉病抗性[J]. 作物学报, 2021, 47(1): 19-29.
[13] 崔静, 王志城, 张新雨, 柯会锋, 吴立强, 王省芬, 张桂寅, 马峙英, 张艳. 棉花GbSTK基因调控开花和黄萎病抗性的功能研究[J]. 作物学报, 2021, 47(1): 30-41.
[14] 闻竞, 沈彦岐, 韩四平, 邢跃先, 张叶, 王梓钰, 李世界, 杨小红, 郝东云, 张艳. 玉米拟轮枝镰孢菌穗腐病抗性基因的挖掘[J]. 作物学报, 2020, 46(9): 1303-1311.
[15] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!