作物学报 ›› 2013, Vol. 39 ›› Issue (09): 1576-1581.doi: 10.3724/SP.J.1006.2013.01576
杨丽华1,2,王金凤2,杜丽璞2,徐惠君2,魏学宁2,李钊2,马翎健1,*,张增艳2,*
YANG Li-Hua1,2,WANG Jin-Feng2,DU Li-Pu2,XU Hui-Jun2,WEI Xue-Ning2,LI Zhao2,MA Ling-Jian1,*,ZHANG Zeng-Yan2,*
摘要:
全蚀病和根腐病是小麦(Triticum aestivum)重要的土传真菌病害。PgPGIP1是人参(Panax ginseng)的一种多聚半乳糖醛酸酶抑制蛋白,可以抑制部分病原真菌分泌的多聚半乳糖醛酸酶的活性。本研究人工合成了PgPGIP1基因,并构建PgPGIP1基因的单子叶植物表达载体pA25-PgPGIP1,通过基因枪介导法将其转入小麦品种扬麦18中。对转PgPGIP1基因的T0至T4代植株进行PCR、RT-PCR和Q-RT-PCR分析,并对其全蚀病和根腐病抗性进行鉴定。结果表明,PgPGIP1基因能够在4个转基因小麦株系中遗传、转录与表达。与未转基因的小麦扬麦18相比,4个转基因小麦株系对全蚀病与根腐病的抗性明显提高,说明PgPGIP1表达增强了转基因小麦对全蚀病与根腐病的抗性。
[1]Zhang X-S(张雪松), Cao Y-S(曹永胜), Cao K-Q(曹克强). Management of w heat soil-borne diseases under the conservative farming system. J Northwest Sci-Tech Univ A&F (Nat Sci Edn) (西北农林科技大学学报?自然科学版), 2005, 33(suppl): 47–48 (in Chinese with English abstract)[2]Daval S, Lebreton L, Gazengel K, Boutin M, Guillerm-Erckelboudt A Y, Sarniguet. The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. Mol Plant Pathol, 2011, 12: 839–854[3]Guilleroux M, Osbourn A. Gene expression during infection of wheat roots by the ‘take-all’ fungus Gaeumannomyces graminis. Mol Plant Pathol, 2004, 5: 203–216[4]Cook R J. Take-all of wheat. Physiol Mol Plant Pathol, 2003, 62: 73–86[5]Gutteridge R J, Bateman G L, Todd A D. Variation in the effects of take-all disease on grain yield and quality of winter cereals in ?eld experiments†. Pest Manag Sci, 2003, 59: 215–224[6]Yang M M, Mavrodi D V, Mavrodi O V, Bonsall R F, Parejko J A, Paulitz T C, Thomashow L S, Yang H T, Weller D M, Guo J H. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Biol Control, 2011, 101: 1481–1491[7]Jiang W(蒋雯), He D(何德), Tao S(陶松). Research progress of resistance to w heat root rot using exogenous gene. J Hebei Agric Sci(河北农业科学), 2010, 14(2): 50–51(in Chinese with English abstract)[8]Kumar J, Schäfer P, Hückelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Kogel K H. Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol, 2002, 3:185–195[9]Jia T-X(贾廷祥), Wu G-B(吴桂本), Liu C-D(刘传德). The present research situation and control countermeasure of root rots in wheat. Sci Agric Sin (中国农业科学), 1995, 28(3): 41–48 (in Chinese with English abstract)[10]Matteo A D, Federici L, Mattei B, Salvi G, Johnson K A, Savino C, Lorenzo G D, Tsernoglou D, Cervone F. The crystal structure of polygalacturonase- inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proc Natl Acad Sci USA, 2003, 100: 10124–10128[11]Jiang H(蒋豪), Tang H-R(汤浩茹). Advance in the research of molecular characterization, expression and regulation of a gene encoding the polygalacturonase-inhibiting protein (PGIP) of plant. Chin Agric Sci Bull (中国农学通报), 2008, 24(8): 63–68 (in Chinese with English abstract)[12]Janni M, Sella L, Favaron F, Blechl A E, Lorenzo G D, Ovidio R D. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant-Microbe Interactions, 2008, 21: 171–177[13]Albersheim P, Anderson A J. Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci USA, 1971, 68: 1815–1819[14]Sathiyaraj G, Srinivasan S, Subramanium S, Kim Y J, Kim Y J, Kwon W S, Yang D C. Polygalacturonase inhibiting protein: isolation, developmental regulation and pathogen related expression in Panax ginseng C.A. Meyer. Mol Biol Rep, 2010, 37: 3445–3454[15]Xu H-J(徐惠君), Pang J-L(庞俊兰), Ye X-G(叶兴国), Du L-P(杜丽璞), Li L-C(李连城), Xin Z-Y(辛志勇), Ma Y-Z(马有志), Chen J-P(陈剑平), Chen J(陈炯), Cheng S-H(程顺和), Wu H-Y(吴宏亚). Study on the gene transferring of Nib8 into wheat for its resistance to the Yellow mosaic virus by bombardment. Acta Agron Sin (作物学报), 2001, 27(6): 688–694 (in Chinese with English abstract)[16]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8019[17]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402–408[18]Dong J-L (董建力), Hui H-X(惠红霞), Huang L-L(黄丽丽), Wang J-D(王敬东), Zhu Y-X(朱永兴), Chen X(陈孝), Ye X-G(叶兴国). Optimization of identification technique and germplasm screening of resistance to take-all in wheat. J Northwest A&F Univ (Nat Sci Edn) (西北农林科技大学学报?自然科学版), 2009, 37(3): 159–162 (in Chinese with English abstract)[19]Bithell S L, Bulter R C, Harrow S, Mckay A, Cromey M G. Susceptibility to take-all of cereal and grass species, and their effects on pathogen inoculum. Ann Appl Biol, 2011, 159: 252–266[20]Dong N, Liu X, Lu Y, Du L P, Xu H J, Liu H X, Xin Z Y, Zhang Z Y. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct Integr Genomic, 2010, 10: 215–226[21]Dang L(党良), Wang A-Y(王爱云), Xu H-J(徐惠君), Zhu X-L(祝秀亮), Du L-P(杜丽璞), Shao Y-J(邵艳军), Zhang Z-Y(张增艳). Development and characterization of GmPGIP3 transgenic Yangmai 18 with enhanced resistance to wheat common root rot. Acta Agron Sin (作物学报), 2012, 38(10): 1833–1838 (in Chinese with English abstract) |
[1] | 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080. |
[2] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[3] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
[4] | 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459. |
[5] | 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323. |
[6] | 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113. |
[7] | 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202. |
[8] | 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261. |
[9] | 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284. |
[10] | 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382. |
[11] | 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296. |
[12] | 陈同睿, 罗艳君, 赵潘婷, 贾海燕, 马正强. 过表达TaJRL53基因提高了小麦赤霉病抗性[J]. 作物学报, 2021, 47(1): 19-29. |
[13] | 崔静, 王志城, 张新雨, 柯会锋, 吴立强, 王省芬, 张桂寅, 马峙英, 张艳. 棉花GbSTK基因调控开花和黄萎病抗性的功能研究[J]. 作物学报, 2021, 47(1): 30-41. |
[14] | 闻竞, 沈彦岐, 韩四平, 邢跃先, 张叶, 王梓钰, 李世界, 杨小红, 郝东云, 张艳. 玉米拟轮枝镰孢菌穗腐病抗性基因的挖掘[J]. 作物学报, 2020, 46(9): 1303-1311. |
[15] | 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005. |
|