欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1783-1790.doi: 10.3724/SP.J.1006.2013.01783

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

44份大豆微核心种质抗菌核病鉴定与评价

韩粉霞,韩广振,孙君明,张金巍,于绍轩,闫淑荣,杨华   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部北京大豆生物学重点实验室,北京 100081
  • 收稿日期:2013-03-25 修回日期:2013-06-09 出版日期:2013-10-12 网络出版日期:2013-07-31
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2011ZX08004-004)和国家科技支撑计划项目(2011BAD35B06)资助。

Identification and Evaluation for Resistance to Sclerotinia Stem Rot in 44 Soybean Mini Core Collections

HAN Fen-Xia,HAN Guang-Zhen,SUN Jun-Ming,ZHANG Jin-Wei,YU Shao-Xuan,YAN Shu-Rong,YANG Hua   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Soybean Biology (Beijing), Ministry of Agriculture, Beijing 100081, China
  • Received:2013-03-25 Revised:2013-06-09 Published:2013-10-12 Published online:2013-07-31

摘要:

大豆菌核病又称白腐病,是一种真菌性病害。主要由真菌 Sclerotinia sclerotiorum (Lib.) de Bary侵染,是世界范围的大豆病害,也是我国大豆主产区的主要病害。本研究利用不同地区和寄主来源的4个菌核病分离物对44份大豆微核心种质进行连续2年的田间接种鉴定,筛选抗/耐菌核病的大豆种质资源,为大豆抗菌核病育种提供优异抗性种质。结果表明,(1)不同大豆种质对菌核病的抗性不同,在44份微核心种质中,中抗种质6份(13.64%),中感种质27份(61.36%),感病种质9份(20.45%),高感I种质2份(4.55%),其中合丰24、大天鹅蛋、倪丁花眉豆、牛毛黄、大黄豆和五月黄6个中抗种质可作为抗性亲本用于大豆抗菌核病育种。(2)不同地区和寄主来源的4个菌核病分离物致病性不同,分离物黑西5(黑龙江省,大豆),病情指数49.32,病斑长度达到5.93 mm,致病性最强;黑饶24(黑龙江省,大豆)与Qin 24(青海省,油菜)致病性次之;Hef 50(安徽省,油菜),病情指数为39.02,病斑长度为3.65 mm,致病性最弱。用黑西5鉴定和筛选抗菌核病大豆种质最为有效。

关键词: 大豆[Glycine max (L.) Merr.], 菌核病, 抗性鉴定

Abstract:

Sclerotinia stem rot, also called white mould, is a fungal pathogen disease worldwide in soybean caused by Sclerotinia sclerotiorum (Lib.) de Bary. A total of 44 soybean cultivars were inoculated with four isolates of S. Sclerotiorum from different geographical regions and host plants in the two consecutive years experiment in the field to screen excellent germplasm for its resistance breeding. The results were as follows: (1) Different soybean cultivars had different resistance level to S. sclerotiorum. Among them, six cultivar (13.64%) were moderate resistant; twenty-seven (61.36%) were moderate susceptible; nine (20.45%) were susceptible; two (4.55%) were highly susceptible, showing that soybean cultivars with resistance to S. sclerotiorum are rare. Six soybean cultivars with moderate resistance, i.e. Hefeng 24, Big Swan egg, Nidinghuamei soybean, Niumaohuang, Big soybean and May soybean, could be used for soybean breeding for S. sclerotiorum resistance. (2) The pathogenicity of S. sclerotiorum isolates from different geographical regions and host plants is different. Isolate Heixi 5 from the soybean field of Heilongjiang had the strongest pathogenicity with 49.32 in DSI and 5.93 mm in lesion length. Isolate Heirao 24 from the soybean field of Heilongjiang and isolate Qin 24 from the oilseed rape field of Qinghai province had the moderate pathogenicity. Isolate Hef 50 from the oilseed rape field of Anhui province was the weakest in infection, with 39.02 in DSI and 3.65 mm in the lesion length. In conclusion, isolate Heixi 5 is the best one for effectively screening for the resistance to S. sclerotiorum in soybean breeding.

Key words: Soybean [Glycine max (L.) Merr.], Sclerotinia Sclerotiorum, Identification for resistance

[1]Hoffnan D D, Hartman G L, Mueller D S. Yield and seed quality of soybean cultivars infected with Sclerotinia sclertiorum. Plant Dis, 1998, 82: 826–829



[2]Ploper L D. Management of economically important diseases on soybean in Argentina. Proceedings of the World Soybean Research Conference VI, Chicago, Illinois, USA, 1999, 269–280



[3]Tu J C. Integrated disease control of white mould (Sclerotinia sclerotiorum) in navy bean (Phaseolus vulgaris). International Symposium on Crop Protection, 1986, 39: 731–740



[4]Anonymous. White mold takes toll in northern cornbelt. Success. Farming, 1995, 93: 50



[5]Dong Q-Z(董全中). Happen and prevention of soybean Sclerotinia sclerotiorum. Soybean Bull (大豆通报), 2003, (3): 13 (in Chinese)



[6]Song S-Y(宋淑云), Jin Q-M(晋齐鸣), Zhang W(张伟), Li H(李红), Su Q-F(苏前富), Wang L-X(王立新), Sui J(隋晶). A review on studies of inoculation technique to Sclerotinia sclerotiorum. J Jilin Agric Sci (吉林农业科学), 2008, 33(4): 26–28 (in Chinese with English abstract)



[7]Dong Z-M(董志敏), Wang S-M(王曙明), Liu Y-Z(刘玉芝), Liu J(刘佳), Yi Z-G(衣志刚), Zhu X-H(朱晓海). Progress on resistance to Sclerotinia sclerotiorum in soybean. Soybean Sci (大豆科学), 2008, 27(6): 1053–1057 (in Chinese with English abstract)



[8]Wang J-S(王金生), Yu A-L(于安亮), Xu P-F(徐鹏飞), Wang J(王君), Chen C(陈晨), Li N-H(李宁辉), Li W-B(李文滨), Wang J-A(王继安), Zhang S-Z(张淑珍). Identification of resistance to Sclerotinia Sclerotiorum in soybean germplasm. Soybean Sci (大豆科学), 2009, 28(6): 1054–1057 (in Chinese with English abstract)



[9]Song S-Y(宋淑云), Zhang W(张伟), Liu Y(刘影), Su Q-F(苏前富), Li H(李红), Jin Q-M(晋齐鸣), Sui J(隋晶), Wang L-X(王立新), Zhao Z-W(赵振伟). Analysis on resistance of soybean varieties to Sclerotinia scleritioum. J Jilin Agric Sci (吉林农业科学), 2009, 34(3): 30–32 (in Chinese with English abstract)



[10]Boland G J, Hall R. Growth room evaluation of soybean cultivars for resistance to Sclerotinia sclerotiorum. Can J Plant Sci, 1986, 66: 559–564



[11]Boland G J, Hall R. Evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum under field condition. Plant Dis, 1987, 71: 934–936



[12]Chun D J, Kao L B, Lockwood J L, Isleib T G. Laboratory and field assessment of resistance in soybean to stem rot caused by Sclerotinia sclerotiorum. Plant Dis, 1987, 71: 811–815



[13]Cline M N, Jacobsen B J. Methods for evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum. Plant Dis, 1983, 64: 784–786



[14]Grau C R, Radke V L, Gillespie F L. Resistance of soybean cultivars to Sclerotinia sclerotiorum. Plant Dis, 1982, 66: 506–508



[15]Han G-Z(韩广振), Han F-X(韩粉霞), Sun J-M(孙君明), Yu S-X(于绍轩), Ge Y-N(葛一楠), Yan S-R(闫淑荣), Yang H(杨华). A rapid method for evaluation of resistance in soybean to Sclerotinia sclerotiorum in the field condition. Sci Agric Sin (中国农业科学), 2010, 43(6): 1282–1287 (in Chinese with English abstract)



[16]Pennypacker B W, Risius M L. Environmental sensitivity of soybean cultivar response to Sclerotinia sclerotiorum. Phytopathology, 1999, 89: 618–622

[1] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[2] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[3] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[4] 杨洋,陈国康,郭成,张炜,孙素丽,王晓鸣,朱振东,段灿星. 玉米种质资源抗腐霉茎腐病鉴定[J]. 作物学报, 2018, 44(8): 1256-1260.
[5] 陈雪萍**,荆凌云**,王嘉,荐红举,梅家琴,徐新福,李加纳,刘列钊*. 甘蓝型油菜茎秆菌核病抗性与木质素及其单体比例的相关性分析及QTL定位[J]. 作物学报, 2017, 43(09): 1280-1289.
[6] 李孟娇,吕蕊花,余建,蔡雨翔,王传宏,赵爱春,鲁成,余茂德*. 果桑肥大性菌核病菌多聚半乳糖醛酸酶基因(CsPG1)的克隆及功能分析[J]. 作物学报, 2016, 42(02): 199-200.
[7] 曹廷杰,陈永兴,李丹,张艳,王西成,赵虹,刘志勇. 河南小麦新育成品种(系)白粉病抗性鉴定与分子标记检测[J]. 作物学报, 2015, 41(08): 1172-1182.
[8] 吕蕊花,金筱耘,赵爱春,吉洁,刘长英,李军,蒲龙,鲁成,余茂德. 果桑肥大性菌核病菌和油菜菌核病菌的交叉侵染、生物学特性及遗传关系[J]. 作物学报, 2015, 41(01): 42-48.
[9] 邢小萍,杨静,袁虹霞,张佳佳,李洪连*,刘文轩*. 普通小麦-卵穗山羊草种质的菲利普孢囊线虫抗性[J]. 作物学报, 2014, 40(11): 1956-1963.
[10] 王宝祥,胡金龙,孙志广,宋兆强,卢百关,周振玲,樊继伟,秦德荣,刘裕强,江玲,徐大勇,万建民. 水稻黑条矮缩病抗性评价方法及抗性资源筛选[J]. 作物学报, 2014, 40(09): 1521-1530.
[11] 王淑文,陆俊杏,万华方,翁昌梅,王珍,李加纳,卢坤,梁颖. BnMAPK1超量表达提高甘蓝型油菜菌核病抗性[J]. 作物学报, 2014, 40(04): 745-750.
[12] 盖江涛,赵团结,李艳,盖钧镒. 大豆腺苷酸激酶基因GmADK的克隆与表达分析[J]. 作物学报, 2013, 39(10): 1739-1745.
[13] 范虎,文自翔,王春娥,王芳,邢光南,赵团结,盖钧镒. 中国野生大豆群体农艺加工性状与SSR关联分析和特异材料的遗传构成[J]. 作物学报, 2013, 39(05): 775-788.
[14] 姚艳梅,柳海东,徐亮,杜德志. 以半冬性甘蓝型油菜为亲本增强春性甘蓝型油菜杂种优势[J]. 作物学报, 2013, 39(01): 118-125.
[15] 曹岩,张晓玫,陈新建,傅永福. 大豆GmNF-YC2基因的克隆与功能分析[J]. 作物学报, 2012, 38(09): 1607-1616.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!