欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1791-1798.doi: 10.3724/SP.J.1006.2013.01791

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜裂角相关性状的遗传与相关分析

崔嘉成1,2,刘佳1,梅德圣1,李云昌1,付丽1,彭鹏飞1,2,王军1,2,3,胡琼1,*   

  1. 1 中国农业科学院油料作物研究所 / 国家油料作物改良中心 / 农业部油料作物生物学与遗传育种重点开放实验室, 湖北武汉 430062;2 中国农业科学院研究生院, 北京100081;3 贵州省油料研究所, 贵州贵阳550006
  • 收稿日期:2013-01-16 修回日期:2013-06-01 出版日期:2013-10-12 网络出版日期:2013-08-01
  • 通讯作者: 胡琼, E-mail: huqiong01@caas.cn, Tel: 027-86711556
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB109302), 国家高技术研究发展(863计划)项目(2012AA101107),国家现代农业产业技术体系建设专项(CARS-13), 国家科技支撑计划项目(2010BAD01B02)和湖北农业创新中心项目资助。

Genetic and Correlation Analysis on Pod Shattering Traits in Brassica napus L.

CUI Jia-Cheng1,2,LIU Jia1,MEI De-Sheng1,LI Yun-Chang1,FU Li1,PENG Peng-Fei1,2,WANG Jun1,2,3,HU Qiong1,*   

  1. 1 Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / National Center for Oil Crops Improvement / Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China; 2Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Oil Crops Research Institute of Guizhou Province, 550006 Guiyang, China
  • Received:2013-01-16 Revised:2013-06-01 Published:2013-10-12 Published online:2013-08-01
  • Contact: 胡琼, E-mail: huqiong01@caas.cn, Tel: 027-86711556

摘要:

抗裂角性是非常重要的油菜性状, 但相关研究报道较少。本研究对11个甘蓝型油菜骨干亲本品系及由其配制的30个不完全双列杂交组合在2个环境下的抗裂角指数及其他7个角果相关性状进行了遗传分析。结果表明, 抗裂角指数遗传变异显著, 遗传上受少数主效基因控制, 效应以加性为主, 显性效应和环境效应影响较小。大部分杂交组合的抗裂角指数杂种优势不显著。抗裂角指数与角果长、果皮重、千粒重和种子直径呈极显著正相关, 与结角密度和角粒数呈极显著负相关。抗裂角性相关性状中, 角果长、千粒重、结角密度和种子直径变异主要由加性方差解释;果皮重和每角粒数主要由显性方差解释。亲本评价分析指出, 作为波里马细胞质雄性不育系统保持系的ZS11B和恢复系的R11其抗裂角性的一般配合力高, 是培育抗裂角杂交油菜品种的首选直接亲本。

关键词: 油菜, 遗传效应, 抗裂角指数, 相关分析

Abstract:

Pod shattering resistance is a very important trait of oilseed rape, and the genetic research has been extremely weak. In this study, pod shattering resistance index (SRI) and other seven pod traits were analyzed based on data collected from a 6×5 incomplete diallel design at two environments. The results demonstrated that obvious genetic variation existed among elite breeding lines and their crosses for pod SRI. Pod shattering resistance was likely controlled by few genes with mainly additive effects, and dominant effects were much less important, whereas the environments played only minor role for pod SRI. There was no significant heterosis in most of the crosses. Pod SRI was detected to be significantly positively correlated with pod length, pod wall weight, 1000-seed weight and seed diameter, but negatively correlated with pod density and number of seeds per pod. The genetic variations of pod length, 1000-seed weight, pod density and seed diameter were mainly explained by additive effects, whereas those of pod wall weight and number of seeds per pod were mainly affected by dominant effects. Among the 11 elite breeding lines, ZS11B and R11 were recommended for using as direct parental lines for making pod shattering resistant cross varieties as maintainer and restorer of lines for Polima cytoplasmic male sterility system, respectively, due to their higher general combining ability on pod SRI and other yield component traits.

Key words: Oilseed rape, Genetic effect, Pod shattering resistance index, Correlation analysis

[1]Østergaard L, Kempin S A, Bies D, Klee H J, Yanofsky M F. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol J, 2006, 4: 45–51



[2]Morgan C L, Bruce D M, Child R, Ladbrooke Z L, Arthur A E. Genetic variation for pod shatter resistance among lines of oilseed rape developed from synthetic B. napus. Field Crop Res, 1998, 58: 153–165



[3]Wang R, Ripley V L, Rakow G. Pod shatter resistance evaluation in cultivars and breeding lines of Brassica napus, B. juncea and Sinapis alba. Plant Breed, 2007, 126: 588–595



[4]Peng P-F(彭鹏飞), Li Y-C(李云昌), Hu Q(胡琼), Liu F-L(刘凤兰), Li Y-D(李英德), Xu Y-S(徐育松), Mei D-S(梅德圣). Screen of varieties suitable for machine harvesting from new breeding hybrids or lines in Brassica napus. Acta Agric Boreali-Sin (华北农学报), 2009, 24(6): 223–226 (in Chinese with English abstract)



[5]Price J S, Hobson R N, Neale M A, Bruce D M. Seed losses in commercial harvesting of oilseed rape. J Agr Eng Res, 1996, 65: 183–191



[6]Kadkol G P, Macmillan R H, Burrow R P, Halloran G M. Evaluation of Brassica genotypes for resistance to shatter: I. Development of a laboratory test. Euphytica, 1984, 33: 63–73



[7]Child R D, Evans D E. Improvements of recoverable yields in oilseed rape (Brassica napus) with growth retardants. Aspects Appl Biol, 1989, 23: 135–143



[8]Szot B, Tys T. The influence of the Spodnam Dc preparation on agrophysical properties of rape siliques and seed losses at maturation and harvest. Proceedings of the 8th International Rapeseed Congress, 1991: 1272–1277



[9]Wen Y-C(文雁成), Fu T-D(傅廷栋), Tu J-X(涂金星), Ma C-Z(马朝芝), Shen J-X(沈金雄), Zhang S-F(张书芬). Advances in studies of pod shattering resistance in rapeseed. J Plant Genet Resour (植物遗传资源学报), 2009, 10(1): 140–145 (in Chinese with English abstract)



[10]Summers J E, Bruce D M, Vancanneyt G, Redig P, Werner C P, Morgan C and Child R D. Pod shatter resistance in the resynthesized Brassica napus line DK142. J Agric Sci, 2003, 140: 43–52



[11]Roberts J A, Elliott K A, Gonzalez-Carranza Z H. Abscission, dehiscence, and other cell separation processes. Annu Rev Plant Biol, 2002, 53: 131–158



[12]Kadkol G. Brassica Shatter-Resistance Research Update. 16th Australian Research Assembly on Brassicas, 2009



[13]Wei W h, Li Y C, Wang L J, Liu S Y, Yan X H, Mei D S, Li Y D, Xu Y S, Peng P F, Hu Q. Development of a novel Sinapis arvensis disomic addition line in Brassica napus containing the restorer gene for Nsa CMS and improved resistance to Sclerotinia sclerotiorum and pod shattering. Theor Appl Genet, 2010, 120: 1089–1097



[14]Morgan C L, Ladbrooke Z L, Bruce D M, Child R and Arthur A E. Breeding oilseed rape for pod shattering resistance. J Agric Sci, 2000, 135: 347–359



[15]Wen Y-C(文雁成), Fu T-D(傅廷栋), Tu J-X(涂金星), Ma C-Z(马朝芝), Shen J-X(沈金雄), Zhang S-F(张书芬). Screening and analysis of resistance to silique shattering in rape (Brassica napus L.). Acta Agron Sin (作物学报), 2008, 34(1): 163–166 (in Chinese with English abstract)



[16]Zhu J(朱军). New approaches of genetic analysis for quantitative traits and their applications in breeding. J Zhejiang Univ (Agric & Life Sci)(浙江大学学报?农业与生命科学版), 2000, 26(1): 1–6 (in Chinese with English abstract)



[17]Wu J-X(吴吉祥), Zhu J(朱军). Methods for predicting genotypic value and heterosis of crop hybrids offspring at different environments. J Zhejiang Agric Univ (浙江农业大学学报), 1994, 20(6): 587–592 (in Chinese with English abstract)



[18]Mongkolporn O, Kadkol G P, Pang E C K, Taylor P W J. Identification of RAPD markers linked to recessive genes conferring silique shatter resistance in Brassica rape. Plant Breed, 2003, 122: 479–484



[19]Peng P-F(彭鹏飞). Determination, Genetic Analysis and QTL Mapping of Pod Shatter Resistance in Rapeseed (Brassica napus L.). MS Thesis of Chinese Academy of Agricultural Sciences, 2009 (in Chinese with English abstract)



[20]Wen Y-C(文雁成). Analysis of silique shatter resistance and its QTLs mapping in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, 2012 (in Chinese with English abstract)



[21]Hu Z Y, Hua W, Huang S M, Yang H L, Zhan G M, Wang X F, Liu G H, Wang H Z. Discovery of pod shatter-resistant associated SNPs by deep sequencing of a representative library followed by bulk segregant analysis in rapeseed. PloS ONE, 2012, 7: 1–7



[22]Zuo Q-F(左清凡), Zhu J (朱军), Liu Y-B(刘宜柏), Pan X-Y(潘晓云), Zhang J-Z (张建中). Genetic analysis of genotype?environment interaction for yield components of rice (Oryza sativa L.) in unequal experiment design. Acta Agron Sin (作物学报), 2001, 27(4): 482–488 (in Chinese with English abstract)



[23]He Y-T(何余堂), Li D-R(李殿荣). A preliminary study of pod shatter resistance in hybrid Brassica napus L. Shaanxi J Agric Sci (陕西农业科学), 1996, 3: 30–31 (in Chinese)



[24]Wu J-X(吴吉祥), Wang G-J(王国建), Zhu J(朱军), Xu F-H(许馥华), Ji D-F(季道藩). Genetic analysis on direct and maternal effects of seed traits in upland cotton (Gossypium hirsutum L.). Acta Agron Sin (作物学报), 1995, 21(6): 659–664 (in Chinese with English abstract)

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[10] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[11] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[12] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[13] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[14] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903.
[15] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!