作物学报 ›› 2014, Vol. 40 ›› Issue (01): 143-153.doi: 10.3724/SP.J.1006.2014.00143
刘铁宁,徐彩龙,谷利敏,董树亭*
LIU Tie-Ning,XU Cai-Long,GU Li-Min,DONG Shu-Ting*
摘要:
当前玉米产量的提高部分归因于种植密度的增加,但过高的种植密度使冠层中下部叶片光照条件变差,致使单株生长速率降低。因此,如何缓解该条件下群体光合与单株光合性能的矛盾成为当前玉米高产栽培中急需解决的问题。为此,在种植密度为105 000株 hm-2 的大田试验条件下,研究了紧凑型玉米品种郑单958及半紧凑型玉米品种金海5号的群体光合速率(CAP)、叶面积指数(LAI)、穗位叶净光合速率(Pn)及抗氧化酶活性等对不同程度去叶的响应,以期为高密度栽培条件下稳定或提高单株生产能力探讨新的技术途径,同时也为耐密高产品种选育提供借鉴。开花后3 d分别对两个品种做不同程度去叶处理,包括去除植株顶部两片叶(S1)、四片叶(S2)、六片叶(S3),以不去叶植株为对照(S0)。结果表明,去叶可显著改善玉米生育后期群体透光率(LT),然而由于S2和S3处理显著降低了LAI,增加了生育后期的漏光损失,不利于光能利用率的提高,致使其实际光化学效率(ΦPSII)和最大光化学效率(Fv/Fm)较低;去除植株顶部两片叶(S1)可显著提高籽粒灌浆期间CAP并延长LAI高值持续期,形成较高的籽粒产量,而过度去叶(S2和S3)则显著降低产量;花后52 d,郑单958 S1处理CAP较对照升高12.49%,而金海5号则升高23.08%;随去叶程度的增强,花后0~26 d内各去叶处理穗位叶Pn、气孔导度(gs)和叶绿素含量明显升高,均显著高于S0,但之后S1处理表现出较优的单叶光合特性。S1处理穗位叶自花后13 d起保持较高的超氧化物歧化酶(SOD)、过氧化物酶(POD)活性及较低的丙二醛(MDA)含量。可见,高密度种植条件下,去除植株顶部两片叶可有效调控两种株型玉米生育后期群体光合速率、穗位叶光合特性及活性氧清除能力,能较好地协调高密度群体与个体的关系,获得较高的籽粒产量,且对半紧凑型品种金海5号调控效果更明显。
[1]Tokatlidis I S, Koutroubas S D. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Res, 2004, 12: 103–114[2]段民孝. 从农大108和郑单958中得到的玉米育种启示. 玉米科学, 2005, 13(4): 49–52Duan M X. Some advice on corn breeding obtained from the elite varieties of Nongda 108 and Zhengdan 958. J Maize Sci , 2005, 13(4): 49–52 (in Chinese with English abstract)[3]卫丽, 熊友才, 马超, 张慧琴, 邵阳, 李朴芳. 不同群体结构夏玉米灌浆期光合特征和产量变化. 生态学报, 2011, 31: 2524–2531Wei L, Xiong Y C, Ma B L, Ma C, Zhang H Q, Shao Y, Li P F. Photosynthetic characterization and yield of summer corn (Zea mays L.) during grain filling stage under different planting pattern and population densities. Acta Ecol Sin, 2011, 31: 2524–2531 (in Chinese with English abstract)[4]Borras L, Westgate M E, Astin J P, Echarte L. Coupling time to silking with plant growth rate in maize. Field Crops Res, 2007, 102: 73–85 [5]赵明, 李少昆, 王志敏, 王树安. 论作物源的数量、质量关系及其类型划分. 中国农业大学学报, 1998, 3(3): 53–58Zhao M, Li S K, Wang Z M, Wang S A. Exposition on genotypes classification and relationship between quality and quantity of crop source. J China Agric Univ, 1998, 3(3): 53–58 (in Chinese with English abstract) [6]杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36: 1226–1233Yang G S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010, 36: 1226–1233 (in Chinese with English abstract)[7]董树亭, 胡昌浩, 岳寿松, 王群瑛, 高荣岐, 潘子龙. 夏玉米群体光合速率特性及其与冠层结构、生态条件的关系. 植物生态学与地植物学学报, 1992, 16: 372–377Dong S T, Hu C H, Yue S S, Wang Q Y, Gao R Q, Pan Z L. The relationship between canopy apparent photosynthesis, canopy structure and ecological conditions. Acta Phytoecol Geobot Sin, 1992, 16: 372–377 (in Chinese with English abstract)[8]Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385–403[9]盛承发. 生长的冗余—作物对于虫害超越补偿作用的一种解释. 应用生态学报, 1990, 1: 26–30Sheng C F. Growth tedionsness as an explanation of over compensation of crops for insect feeding. Chin J Appl Ecol, 1990, 1: 26–30 (in Chinese with English abstract)[10]李话, 张大勇. 半干旱地区春小麦根系形态特征与生长冗余的初步研究. 应用生态学报, 1999, 10: 26–30Li H, Zhang D Y. Morphological characteristics and growth redundancy of spring wheat root system in semi arid regions. Chin J Appl Ecol, 1999, 10: 26–30 (in Chinese with English abstract)[11]韩明春, 吴建军, 王芬. 冗余理论及其在农业生态系统管理中的应用. 应用生态学报, 2005, 16: 375–378Han M C, Wu J J, Wang F. Redundancy theory and its application in agro-ecosystem management. Chin J Appl Ecol, 2005, 16: 375–378 (in Chinese with English abstract)[12]郝梦波, 王空军, 董树亭, 张吉旺, 李登海, 刘鹏, 杨今胜, 柳京国. 高产玉米叶片冗余及其对产量和光合特性的影响. 应用生态学报, 2010, 21: 344–350Hao M B, Wang K J, Dong S T, Zhang J W, Li D H, Liu P, Yang J S, Liu J G. Leaf redundancy of high-yielding maize (Zea may L.) and its effects on maize yield and photosynthesis. Chin J Appl Ecol (应用生态学报), 2010, 21: 344–350 (in Chinese with English abstract)[13]Ahmadi A, Joudi M. Effects of timing and defoliation intensity on growth, yield and gas exchange rate of wheat grown under well-watered and drought conditions. Pak J Biol Sci, 2007, 10: 3794–3800[14]Rajcan I, Tollenaar M. Source: sink ratio and leaf senescence in maize: I. Dry matter accumulation and partitioning during grain filling. Field Crops Res, 1999, 60: 245–253[15]Uhart S A, Andrade F H. Nitrogen and carbon accumulation and remobilization during grain filling in maize under different source/sink ratios. Crop Sci, 1995, 35: 183–190[16]Yin Y, Wang Z, He M, Fu J, Lu S. Postanthesis allocation of photosynthesis and grain growth in wheat cultivars as affected by source/sink change. Biol Plant, 1998, 41: 203–209 [17]严云, 廖成松, 张福锁, 李春俭. 密植条件下玉米冠根生长抑制的因果关系. 植物营养与肥料学报, 2010, 16: 257–265Yan Y, Liao C S, Zhang F S, Li C J. The causal relationship of the decreased shoot and root growth of maize plants under higher plant density. Plant Nutr Fert Sci, 2010, 16: 257–265 (in Chinese with English abstract)[18]Zhu G X, Midmore D J, Yule D F, Radford B J. Effect of timing of defoliation on wheat (Triticum aestivum) in central Queensland 2. N uptake and relative N use efficiency. Field Crops Res, 2006, 96: 160–167[19]Tollenaar M, Daynard T B. Effect of defoliation on kernel development in maize. Can J Plant Sci, 1978, 58: 207–212[20]Dreccer M F, Grashoff C, Rabbinge R. Source-sink ratio in barley (Hordeum vulgare L.) during grain filling: effects on senescence and grain protein concentration. Field Crops Res, 1997, 49: 269–277[21]刘国顺, 习向银, 时向东, 周世民, 秦艳青. 剪叶处理对烤烟漂浮育苗中烟草生长及生理特性的影响. 中国烟草科学, 2003, (1): 25–27Liu G S, Xi X Y, Shi X D, Zhou S M, Qin Y Q. Effects of clipping treatment on growth and physiological characteristics of flue-cured tobacco seedlings in floating system. Chin Tob Sci, 2003, (1): 25–27 (in Chinese with English Abstract)[22]李跃强, 宣维健, 盛承发. 大强度去叶对棉花叶绿素和保护酶系的影响. 生态学报, 2006, 26: 830–836Li Y Q, Xuan W J, Sheng C F. Activities of chlorophyll and protective enzyme systems in cotton plants Gossypium hirsutum L. with heavy leaf removal by no overcompensation. Acta Ecol Sin, 2006, 26: 830–836 (in Chinese with English Abstract)[23]Tollenaar M, Daynard T B. Effect of source-sink ratio on dry matter accumulation and leaf senescence of maize. Can J Plant Sci, 1982, 62: 855–860[24]Dong S T, Hu C H, Gao R Q. Rates of apparent photosynthesis, respiration and dry matter accumulation in maize canopies. Biol Plant, 1993, 35: 273–277[25]Arnon D I. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris L. Plant Physiol, 1949, 24: 1–15[26]赵世杰, 史安国, 董新纯. 植物生理学实验指导. 北京: 中国农业科技出版社, 2002. pp 55–143 Zhao S J, Shi A G, Dong X C. Laboratory Guide for Plant Physiology. Beijing: China Agricultural Science and Technology Press, 2002. pp 55–143 (in Chinese)[27]Giannopolitis C, Ries S. Super oxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1977, 59: 309–314 [28]Klapheck S, Zimmer I, Cosse H. Scavenging of hydrogen peroxide in the endosperm of ricinus communis by ascorbate peroxidase. Plant Cell Physiol, 1990, 31: 1005–1013[29]Monneveux P, Pastenes C, Reynolds M P. Limitations to photosynthesis under light and heat stress in three high-yielding wheat genotypes. J Plant Physiol, 2003, 160: 657–666[30]刘万代, 尹钧, 朱高纪. 剪叶对不同穗型小麦品种干物质积累及籽粒产量的影响. 中国农业科学, 2007, 40: 1353–1360Liu W D, Yin J, Zhu G J. Effects of leaf removal on dry matter accumulation and grain yield in different spike-type wheat varieties. Sci Agric Sin, 2007, 40: 1353–1360 (in Chinese with English abstract)[31]Apel K, Hirt H. Reactive oxygen species: Metabolism oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373–399[32]Moller I M. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 561–591[33]Garnczarska M, Bednarski W, Morkunas I. Re-aeration-induced oxidative stress and antioxidative defenses in hypoxically pretreated lupine roots. J Plant Physiol, 2004, 161: 415–422[34]Sundar D, Chaitanya K V, Jutur P P, Reddy A R. Low temperature-induced changes in antioxidative metabolism in rubber-producing shrub, guayule (Parthenium argentatum Gray). Plant Growth Regul, 2004, 44: 175–181[35]Christensen L E, Below F E, Hageman R H. The effect of ear removal on senescence and metabolism of maize. Plant Physiol, 1981, 68: 1180–1185[36]Crafts-Brandner S J, Below F E, Harper J E, Hageman R H. Differential senescence of maize hybrids following ear removal. I. Whole plant. Plant Physiol, 1984, 74: 360–367[37]Borrás L, Maddonni G A, Otegui M E. Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crops Res, 2003, 82: 13–26[38]董树亭, 王空军, 胡昌浩. 玉米品种更替过程中群体光合特性的演变. 作物学报, 2000, 26(2): 200–204Dong S T, Wang K J, Hu C H. Development of canopy apparent photosynthesis among maize varieties from different eras. Acta Agron Sin (作物学报), 2000, 26(2): 200–204 (in Chinese with English Abstract)[39]郭江, 肖凯, 郭新宇, 张凤路, 赵春江. 玉米冠层结构、光分布和光合作用研究综述. 玉米科学, 2005, 13(2): 55–59Guo J, Xiao K, Guo X Y, Zhang F L, Zhao C J. Review on maize canopy structure, light distributing and canopy photosynthesis. J Maize Sci (玉米科学), 2005, 13(2): 55–59 (in Chinese with English Abstract) [40]Gelang J, Pleijel H, Sild E, Danielsson H, Younis S, Selldén G. Rate and duration of grain filling in relation to flag leaf senescence and grain yield in spring wheat (Triticum aestivum L.) exposed to different concentrations of ozone. Physiol Plant, 2000, 110: 366–375[41]胡昌浩, 董树亭, 岳寿松, 王群瑛, 高荣岐, 潘子龙. 高产夏玉米群体光合速率与产量关系的研究. 作物学报, 1993, 19: 63–69Hu C H, Dong S T, Yue S S, Wang Q Y, Gao R Q, Pan Z L. The research on the relationship between canopy apparent photosynthesis and the yield of high-yield corn. Acta Agron Sin (作物学报), 1993, 19: 63–69 (in Chinese with English abstract)[42]徐庆章, 王庆成, 牛玉贞, 王忠孝, 张军. 玉米株型与群体光合作用的关系研究. 作物学报, 1995, 21: 492–496Xu Q Z, Wang Q C, Niu Y Z, Wang Z X, Zhang J. The relationship between corn plant type and canopy apparent photosynthesis. Acta Agron Sin (作物学报), 1995, 21: 492–496 (in Chinese with English Abstract) |
[1] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[2] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
[3] | 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359. |
[4] | 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853. |
[5] | 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627. |
[6] | 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248. |
[7] | 万泽花,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化[J]. 作物学报, 2019, 45(9): 1446-1453. |
[8] | 周宝元,马玮,孙雪芳,丁在松,李从锋,赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究[J]. 作物学报, 2019, 45(4): 589-600. |
[9] | 高超,李学文,孙艳伟,周婷,罗纲,陈财. 淮河流域夏玉米生育阶段需水量及农业干旱时空特征[J]. 作物学报, 2019, 45(2): 297-309. |
[10] | 王洪章,刘鹏,贾绪存,李静,任昊,董树亭,张吉旺,赵斌. 不同栽培管理条件下夏玉米产量与肥料利用效率的差异解析[J]. 作物学报, 2019, 45(10): 1544-1553. |
[11] | 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝. 土壤深松下磷肥施用深度对夏玉米根系分布及磷素吸收利用效率的影响[J]. 作物学报, 2019, 45(10): 1565-1575. |
[12] | 彭强,李佳丽,张大双,姜雪,邓茹月,吴健强,朱速松. 不同环境基于高密度遗传图谱的稻米外观品质QTL定位[J]. 作物学报, 2018, 44(8): 1248-1255. |
[13] | 李荣发,刘鹏,杨清龙,任昊,董树亭,张吉旺,赵斌. 玉米密植群体下部叶片衰老对植株碳氮分配与产量形成的影响[J]. 作物学报, 2018, 44(7): 1032-1042. |
[14] | 胡旦旦,张吉旺,刘鹏,赵斌,董树亭. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响[J]. 作物学报, 2018, 44(6): 920-930. |
[15] | 高尚,明博,李璐璐,谢瑞芝,薛军,侯鹏,王克如,李少昆. 黄淮海夏玉米籽粒脱水与气象因子的关系[J]. 作物学报, 2018, 44(12): 1755-1763. |
|