欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (01): 134-142.doi: 10.3724/SP.J.1006.2014.00134

• 耕作栽培·生理生化 • 上一篇    下一篇

四川盆地单产9000 kg hm−2以上超高产小麦品种产量结构与干物质积累特点

汤永禄1,*,李朝苏1,吴春1,吴晓丽1,黄钢1,何刚2   

  1. 1 四川省农业科学院作物研究所,四川成都 610066;2 四川省江油市农业局,四川江油 621700
  • 收稿日期:2013-02-20 修回日期:2013-08-16 出版日期:2014-01-12 网络出版日期:2013-10-22
  • 通讯作者: 汤永禄, E-mail: ttyycc88@163.com
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-3-1-23)和四川省科技育种攻关项目(2011NZ0098-15)资助。

Yield Component and Dry Matter Accumulation in Wheat Varieties with 9000 kg ha−1 Yield Potential in Sichuan Basin

TANG Yong-Lu1,LI Chao-Su1,WU Chun1,WU Xiao-Li1,HUANG Gang1,HE Gang2   

  1. 1 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; 2 Bureau of Agriculture of Jiangyou City, Sichuan Province, Jiangyou 621700, China
  • Received:2013-02-20 Revised:2013-08-16 Published:2014-01-12 Published online:2013-10-22
  • Contact: 汤永禄, E-mail: ttyycc88@163.com

摘要:

选择3个典型超高产品种和7个一般高产品种(对照)4个环境(年份×地点)下观测其产量、产量构成因素和干物质积累、转运特点,以揭示四川盆地高温、高湿、弱光照生态条件下超高产小麦品种的产量形成特性,为超高产育种和生产提供依据。超高产品种在4个环境下的平均产量达9338 kg hm-2,比对照品种高24.2%;其穗数(449×104 hm-2)、穗粒数(42.3)、粒数(18 825 m-2)、千粒重(47.8 g)分别比对照高8.2%10.7%18.3%0.6%。超高产品种在各个生育阶段的干物质积累速率、干物质积累量都高于对照品种,尤其是生育前期,如在分蘖盛期和拔节期干物质积累量分别高11.1%18.2%;同时,其干物质转运量、转运效率和对籽粒的贡献率也高于对照品种,成熟时非籽粒器官干物质所占比重较对照品种低1.2~3.5个百分点。小麦籽粒产量与各个生育阶段的群体干重和分蘖、拔节期的个体干重呈极显著正相关,超高产品种具有分蘖力强,前期生长旺盛、干物质积累多,后期分配到籽粒的干物质比例较高等特点,这是高产的生理基础。

关键词: 四川盆地, 超高产小麦, 产量结构, 干物质积累和转运

Abstract:

The objective of this study was to explore yield-forming characteristics of super-high-yield (SHY) wheat varieties that grow under high temperature, high humidity, and weak sunshine condition in Sichuan Basin, China. In four year ´ location environments, we tested the grain yield and its components of three SHY varieties and seven common high-yield varieties (control), as well as the characteristics of dry matter accumulation and translocation. The average yield of SHY varieties over environments reached 9338 kg ha-1, which was 24.2% higher than that of the control. SHY varieties had average spike number of 449×104 ha-1, grain number per spike of 42.3, grain number of 18 825 m-2, and thousand-grain weight of 47.8 g, which were 8.2%, 10.7%, 18.3%, and 0.6% higher than those of the control. At various growth stages, SHY varieties had significantly higher rates and larger amounts of dry matter accumulation, especially in the early growing period. For example, the amount of dry matter accumulation in the SHY varieties was 11.1% and 18.2% higher than that of the control at tillering and jointing stages, respectively. Moreover, compared with the control, SHY varieties had significantly higher amount of dry matter translocation, translocation efficiency, and contribution of remobilization to grain. At maturity, the proportion of dry matter in vegetative organs was 1.2%–3.5% lower in SHY variety than in the control. There were significant correlations between grain yield and colony dry matter at various growth stages and individual dry matter at tillering and jointing stages. SHY varieties tested in this study possess strong tillering ability, early vigorous growth, and high levels of dry matter accumulation and translocation into grains, which ultimately result in the high grain yield.

Key words: Sichuan Basin, Super-high-yield wheat, Yield component, Dry matter accumulation and translocation

[1]Chakraborty S, Newton A C. Climate change, plant diseases and food security: an overview. Plant Pathol, 2011, 60: 2–14



[2]于振文. 小麦产量与品质生理及栽培技术. 北京: 中国农业出版社, 2006. pp 3–12



Yu Z W. Grain yield and quality of wheat and cultivation technologies. Beijing: China Agriculture Press, 2006. pp 3–12 (in Chinese)



[3]季书勤, 赵淑章, 王韶中, 吕凤荣, 刘媛媛, 张荣英, 仲有政. 温麦6号小麦9000kg/hm2若干群体质量指标研究初报. 作物学报, 1998, 24: 865–869



Ji S Q, Zhao S Z, Wang S Z, Lü F R, Liu Y Y, Zhang R Y, Zhong Y Z. The preliminary study on populations quality indexes in Wenmai 6 wheat with yield of 9000 kg per hectare. Acta Agron Sin, 1998, 24: 865–869 (in Chinese with English abstract)



[4]余松烈, 于振文, 董庆裕, 王东, 张永丽, 姚德常, 王坚强. 小麦亩产789.9 kg高产栽培技术思路. 山东农业科学, 2010, (4): 11–12



Yu S L, Yu Z W, Dong Q Y, Wang D, Zhang Y L, Yao D C, Wang J Q. Theory of cultivation techniques for wheat with yield of 789.9 kg per mu. Shandong Agricultural Sciences, 2010, (4): 11–12 (in Chinese)



[5]于振文, 田奇卓, 潘庆民, 岳寿松, 王东, 段藏禄, 段玲玲, 王志军, 牛运生. 黄淮麦区冬小麦超高产栽培的理论与实践. 作物学报, 2002, 28: 577–585



Yu Z W, Tian Q Z, Pan Q M, Yue S S, Wang D, Duan C L, Duan L L, Wang Z J, Niu Y S. Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow river and Huaihe River Districts. Acta Agron Sin, 2002, 28: 577–585 (in Chinese with English abstract)



[6]丁锦峰, 杨佳凤, 王云翠, 陈芳芳, 封超年, 朱新开, 李春燕, 彭永欣, 郭文善. 长江中下游稻茬小麦超高产群体干物质积累与分配特性. 麦类作物学报, 2012, 32: 1118–1123



Ding J F, Yang G F, Wang Y C, Chen F F, Feng C N, Zhu X K, Li C Y, Peng Y X, Guo W S. Accumulation and distribution characteristics of dry matter of super high yield wheat under rice stubble in middle and lower reaches of the Yangtse River. J Triticeae Crops, 2012, 32: 1118–1123 (in Chinese with English abstract)



[7]王志芬, 吴科, 宋良增, 王守瑰, 范仲学, 张凤云, 朱连先, 张福锁. 山东省不同穗型超高产小麦产量构成因素分析与选择思路. 山东农业科学, 2001, (4): 6–8



Wang Z F, Wu K, Song L Z, Wang S G, Fan Z X, Zhang F Y, Zhu L X, Zhang F S. Analysis of yield elements for super high-yielding wheat varieties with different spike type and selection strategy in Shandong Province. Shandong Agric Sci, 2001, (4): 6–8 (in Chinese with English abstract)



[8]孙亚辉, 李瑞奇, 党红凯, 张馨文, 李慧玲, 李雁鸣. 河北省超高产冬小麦群体和个体生育特性及产量结构特点. 河北农业大学学报, 2007, 30(3): 1–8



Sun Y H, Li R Q, Dang H K, Zhang R W, Li H L, Li Y M. Population and individual characteristics of growth and development and yield components of super-high-yielding winter wheat in Hebei Province. J Agric Univ Hebei, 2007, 30(3): 1–8 (in Chinese with English abstract)



[9]于振文, 潘庆民, 董庆裕. 冬小麦超高产栽培. 北京: 中国农业出版社, 1999. pp 54–55



Yu Z W, Pan Q M, Dong Q Y. Super High Yield Cultivation of Winter Wheat. Beijing: China Agriculture Press, 1999. pp 54–55 (in Chinese)



[10]崔党群, 张娟, 闻捷, 王俊振. 黄淮冬麦区超高产小麦品种的产量结构模式研究. 华北农学报, 2001, 16(4): 1–5



Cui D Q, Zhang J, Wen J, Wang J Z. Studies on the models for yield structure of super-high-yielding winter wheat cultivars in Huang-Huai wheat region. Act a Agric Boreali-Sin, 2001, 16(4): 1–5 (in Chinese with English abstract)



[11]傅兆麟, 李洪琴. 黄淮冬麦区小麦超高产的几个问题探讨. 麦类作物, 1998, 18(6): 48–51



Fu Z L, Li H Q. Discuss some problems on super high yielding of wheat in Huang-Huai wheat region. Tritical Crops, 1998, 18(6): 48–51 (in Chinese)



[12]杜永, 王艳, 王学红, 刘辉, 杨成, 杨建昌. 稻麦两熟区超高产小麦株型特征研究. 麦类作物学报, 2008, 28: 1075–1079



Du Y, Wang Y, Wang X H, Liu H, Yang C, Yang J C. Plant-type characteristics of super-high-yield wheat in rice-wheat cropping system. J Triticeae Crops, 2008, 28: 1075–1079 (in Chinese with English abstract)



[13]于振文, 潘庆民, 姜东, 张永丽, 王东. 9000 kg/公顷小麦施氮量与生理特性分析. 作物学报, 2003, 29: 37–43



Yu Z W, Pan Q M, Jiang D, Zhang Y L, Wang D. Analysis of the amount of nitrogen applied and physiological characteristics in wheat of the yield level of 9000 kg per hectare. Acta Agron Sin, 2003, 29: 37–43 (in Chinese with English abstract)



[14]汤永禄, 李朝苏, 吴春, 李生荣, 黄辉跃, 王常玲. 四川盆地弱光照生态区小麦超高产技术途径分析. 麦类作物学报, 2013, 2013, 33: 51–59



Tang Y L, Li C S, Wu C, Li S R, Huang H Y, Wang C L. Analysis on the technical measures for super high yield of wheat (over 9 t hm-2) in Sichuan Basin with weak light. J Triticeae Crops, 2013, 2013, 33: 51–59 (in Chinese with English abstract)



[15]李俊, 魏会廷, 杨粟洁, 李朝苏, 汤永禄, 胡晓蓉, 杨武云. 川麦42的1BS染色体臂对小麦主要农艺性状的遗传效应. 作物学报, 2009, 35: 2167–2173



Li J, Wei H T, Yang S J, Li C S, Tang Y L, Hu X R, Yang W Y. Genetic effects of 1BS chromosome arm on the main agronomic traits in Chuanmai 42. Acta Agron Sin, 2009, 35: 2167–2173 (in Chinese with English abstract)



[16]Fisher R A. Wheat physiology: a review of recent developments. Crop Pasture Sci, 2011, 62: 95–114



[17]del Blanco I A, Rajaram S, Kronstad W E. Agronomic potential of synthetic hexaploid wheat-derived populations. Crop Sci, 2001, 41: 670–676



[18]周玲, 王朝辉, 李富翠, 孟晓瑜, 李可懿, 李生秀. 不同产量水平旱地冬小麦品种干物质累积和转移的差异分析. 生态学报, 2012, 32: 4123–4131



Zhou L, Wang ZH, Li FC, Meng XY, Li KY, Li SX. Analysis of dry matter accumulation and translocation for winter wheat cultivars with different yields on dryland. Acta Ecol Sin, 2012, 32: 4123–4131 (in Chinese with English abstract)



[19]余遥. 四川小麦. 成都: 四川科学技术出版社, 1998. pp 168–170



Yu Y. Wheat in Sichuan of China, Chengdu: Sichuan Publishing House of Science and Technology, 1998. pp 168–170 (in Chinese)



[20]李跃建. 四川小麦产量性状的改良和超高产育种策略. 西南农业学报, 1998年11卷(育种栽培专辑): 19–25



Li Y J. Yield Improvement and Strategies of Supper High Yield Breeding for Wheat in Sichuan. Southwest China J Agric Sci, 1998, 11(special issue for breeding and cultivation): 19–25 (in Chinese with English abstract)



[21]Slafer G A, Calderini D F, Miralles D J. Yield Components and compensation in wheat: opportunities for further increasing yield potential. In: Reynolds M P, Rajaram S, McNab A, eds. Increasing Yield Potential in Wheat: Breaking the Barriers. Mexico, D.F.: CIMMYT. 1996. pp 101–133



[22]Tabitha A, Peter D J, Anton N, Robert Z. Breaking the 15 t/ha Wheat Yield Barrier. New directions for a diverse planet: Proceedings of the 4th International Crop Science Congress. Brisbane, Australia, 26 Sep.–1 Oct. 2004, ISBN 1 920842 20 9, http://www.cropscience.org.au



[23]汤永禄, 杨武云, 魏会廷, 李朝苏, 李俊. 利用人工合成六倍体小麦突破小麦产量瓶颈的机会与潜力. 中山大学学报(自然科学版), 2010, 29: 86–92



Tang YL, Yang WY, Wei HT, Li CS, Li J. Opportunities for breaking the barriers of wheat yield using synthetic hexaploid wheats. Acta Sci Nat Universitatis Sunyatseni, 2010, 29: 86–92 (in Chinese with English abstract)



[24]周阳, 何中虎, 陈新民, 王德森, 张勇, 张改生. 30余年来北部冬麦区小麦品种产量改良遗传进展. 作物学报, 2007, 33: 1530–1535



Zhou Y, He Z H, Chen X M, Wang D S, Zhang Y, Zhang G S. Genetic gain of wheat breeding for yield in northern winter wheat zone over 30 years. Acta Agron Sin, 2007, 33: 1530–1535 (in Chinese with English abstract)



[25]Foulkes M J, Slafer GA, Davies W J, Berry P M, Sylvester-Bradley R, Martre P, Calderini D F, Griffiths S, Reynolds M P. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot, 2011, 62: 469–486



[26]Blum A, Sinmena B, Mayer J, Golan G, Shpiler L. Stem reserve mobilization supports wheat-grain filling under heat stress. Aust J Plant Physiol, 1994, 21: 771–781



[27]程顺和, 郭文善, 王龙俊. 中国南方小麦. 南京: 江苏科学技术出版社, 2012. pp 89–93



Chen S H, Guo W S, Wang L J. Wheat in Southern China. Nanjing: Jiangsu Science and Technology Publishing House, 2012. pp 89–93 (in Chinese)



[28]张法全, 王小燕, 于振文, 王西芝, 白洪立. 公顷产10000 kg 小麦氮素和干物质积累与分配特性. 作物学报, 2009, 35: 1086–1096



Zhang F Q, Wang X Y, Yu Z W, Wang X Z, Bai H L. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare. Acta Agron Sin, 2009, 35: 1086–1096 (in Chinese with English abstract)

[1] 李博, 张驰, 曾玉玲, 李秋萍, 任洪超, 卢慧, 杨帆, 陈虹, 王丽, 陈勇, 任万军, 邓飞. 播期对四川盆地杂交籼稻米饭食味品质的影响[J]. 作物学报, 2021, 47(7): 1360-1371.
[2] 王旭虹,李鸣晓,张群,金峰,马秀芳,姜树坤,徐正进,陈温福. 籼型血缘对籼粳稻杂交后代产量和加工及外观品质的影响[J]. 作物学报, 2019, 45(4): 538-545.
[3] 徐富贤, 周兴兵, 张林, 蒋鹏, 刘茂, 朱永川, 郭晓艺, 熊洪. 四川盆地东南部气象因子对杂交中稻产量的影响[J]. 作物学报, 2018, 44(04): 601-613.
[4] 吴晓丽,汤永禄,李朝苏,吴春,黄钢,马蓉. 四川盆地小麦籽粒的灌浆特性[J]. 作物学报, 2014, 40(02): 337-345.
[5] 陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然. 近年我国玉米超高产田的分布、产量构成及关键技术[J]. 作物学报, 2012, 38(01): 80-85.
[6] 李成奇,郭旺珍,张天真. 衣分不同陆地棉品种的产量及产量构成因素的遗传分析[J]. 作物学报, 2009, 35(11): 1990-1999.
[7] 史鸿儒;张文忠;解文孝;杨庆;张振宇;韩亚东;徐正进;陈温福. 不同氮肥施用模式下北方粳型超级稻物质生产特性分析[J]. 作物学报, 2008, 34(11): 1985-1993.
[8] 田纪春;邓志英;胡瑞波;王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析[J]. 作物学报, 2006, 32(11): 1699-1705.
[9] 隋娜;李萌;田纪春;孟庆伟;赵世杰. 超高产小麦品种(系)生育后期光合特性的研究[J]. 作物学报, 2005, 31(06): 808-817.
[10] 康国章;王永华;郭天财;朱云集. 氮素施用对超高产小麦生育后期光合特性及产量的影响[J]. 作物学报, 2003, 29(01): 82-86.
[11] 许为钢;胡琳;吴兆苏;盖钧镒. 关中地区小麦品种产量与产量结构遗传改良的研究[J]. 作物学报, 2000, 26(03): 352-358.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!