欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (11): 1990-1999.doi: 10.3724/SP.J.1006.2009.01990

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

衣分不同陆地棉品种的产量及产量构成因素的遗传分析

李成奇,郭旺珍,张天真*   

  1. 南京农业大学作物遗传改良与种质创新重点实验室/棉花研究所,江苏南京210095
  • 收稿日期:2008-11-24 修回日期:2009-06-25 出版日期:2009-11-12 网络出版日期:2009-09-08
  • 通讯作者: 张天真, E-mail: cotton@njau.edu.cn; Tel: 025-84395307
  • 基金资助:

    本研究由国家重点基础研究发展规划(973规划)项目(2006CB101708)和高等学校学科创新引智计划项目(B08025)资助。

Quantitative Inheritance of Yield and Its Components in Upland Cotton(Gossypium hirsutum L.)Cultivars with Varied Lint Percentages

LI Cheng-Qi,GUO Wang-Zhen,ZHANG Tian-Zhen*   

  1. National Key Laboratory of Crop Genetics and Germplasm Enhancement/Cotton Research Institute,Nanjing Agricultural University,Nanjing210095,China
  • Received:2008-11-24 Revised:2009-06-25 Published:2009-11-12 Published online:2009-09-08
  • Contact: ZHANG Tian-Zhen, E-mail: cotton@njau.edu.cn; Tel: 025-84395307

摘要:

选用衣分不同的陆地棉品种配置组合,率先将主基因-多基因联合世代分析与双列杂交试验分析相结合,分别从单个和整体基因水平上对棉花产量及产量构成因素进行了遗传研究。对2个高×低衣分组合的主基因-多基因6世代联合分析结果表明,各产量性状至少在1个组合中检测到主基因的存在,说明产量性状主基因存在的普遍性。由2个组合各产量性状的主基因、多基因遗传率比较得出,产量性状的主基因遗传率比多基因遗传率在不同组合间趋势变化相对较稳定;各性状在2个组合中的主基因、多基因遗传率分量不完全相同。衣分、铃重和籽指在2个组合中分别以主基因遗传为主和以多基因遗传为主;子棉产量和皮棉产量在2个组合中均以主基因遗传为主;衣指在组合I中以多基因遗传为主,在组合II中属于典型的多基因遗传;单株铃数在组合I中属于典型的主基因遗传,在组合II中以多基因遗传为主。双列杂交结果表明,陆地棉产量及产量构成因素都有较高的遗传主效应方差,产量性状受加性效应和显性效应共同控制,其中,衣分、衣指以加性效应为主;子棉产量、铃重和籽指以显性效应为主;皮棉产量和单株铃数以加性和显性效应为主。衣分和衣指的普通广义遗传率和普通狭义遗传率均最高,与联合世代分析两性状的总遗传率平均值结果趋势一致。相关和通径分析一致表明,产量构成因素中单株铃数对皮棉产量的贡献最大,衣分次之,铃重最小。

关键词: 衣分, 产量, 产量结构因素, 主基因-多基因, 双列杂交

Abstract:

Improving cotton yield is still the main goal of present cotton breeding; it is meaningful for studying the genetics of cotton yield traits for yield breeding. Lint percentage is one of the important yield components, and plenty of data show that the raising of cotton yield has close relation with lint percentage improvement. At the same time, the different levels of correlation is exist between lint percentage and other yield traits, yield components and fiber quality characters. Therefore, the inheritance research of lint percentage and its related traits is very important. In this paper, major-polygene jointing generations analyses were first combined with diallel cross experiment analyses to investigate the genetics of yield and its components in upland cotton (Gossypium hirsutum L.) at single and whole gene levels, respectively, by making crosses using cultivars with different lint percentage. Joint analyses of six generations were performed in the genetics of yield traits in two high × low lint percentage crosses, by using the method of major gene-polygene mixed inheritance model. We found from the results that major genes controlling each of yield traits were always detected at least in one cross, indicating that the major genes controlling yield traits existed generally. The comparison of major gene and polygene heritability for all traits between two crosses showed major gene heritability had more stable tendency than polygene heritability. Heritability proportion of each trait was different between two crosses. Lint percentage, boll weight and seed index were mainly controlled by major gene and polygene in two crosses, respectively; seed yield and lint yield were mainly controlled by major gene in two crosses; lint index was mainly controlled by polygene in cross I and belonged to typical polygene inheritance in cross II; bolls per plant belonged to typical major gene inheritance in cross I and was mainly controlled by polygene in cross II. The diallel cross results indicated that yield and its components of upland cotton had always higher variance of genetic major effects, and yield traits were controlled by additive effects and dominant effects altogether. In which, lint percentage and lint index were mainly controlled by additive effects; seed yield, Boll weight and seed index were mainly controlled by dominant effects; lint yield and bolls per plant were mainly controlled by additive effects and dominant effects. Both common broad heredity and common narrow heredity of lint percentage and lint index were always the highest, which had also the highest average value of total heritability in joint generations analyses. Among yield components, bolls per plant had the most contribution to lint yield, the second contribution from lint percentage, and the least contribution from boll weight. Our studies might provide some theoretical foundation for further elucidating the heredity rule and inheritance mode of major gene-polygene of yield and its components in upland cotton, as well as for adopting appropriate breeding strategy to improve cotton yield.

Key words: Lint percentage, Yield, Yield Components, Major gene-polygene, Diallel cross

[1] Godoy A S, Palomo G A. Genetic analysis of earliness in upland cotton (Gossypium hirsutum L.): II. Yield and lint percentage. Euphytica, 1999, 105: 161-166

[2] Li W-H(李卫华), Hu X-Y(胡新燕), Shen W-W(申温文), Song Y-P(宋玉萍), Xu J-A(徐加安), Li Q(李强). Genetic analysis of important economic traits in upland cotton (G. hirsutum L.). Cotton Sci (棉花学报), 2000,12(2): 81-84 (in Chinese with English abstract)

[3] Han X-M(韩祥铭), Liu Y-X(刘英欣). Genetic analysis for yield and its components in upland cotton. Acta Agron Sin (作物学报), 2002, 28(4): 533-536 (in Chinese with English abstract)

[4] Yuan Y-L(袁有禄), Zhang T-Z(张天真), Guo W-Z(郭旺珍), Pan J-J(潘家驹), Kohel R J. Heterosis and gene action of boll weight and lint percentage in high quality fiber property varieties in upland cotton. Acta Agron Sin (作物学报), 2002, 28(2): 196-202 (in Chinese with English abstract)

[5] Sun J-L(孙君灵), Du X-M(杜雄明), Zhou Z-L(周忠丽), Pan Z-E(潘兆娥), Pang B-Y(庞保印). Analysis on heritability and heterosis of main traits of Bt transgenic cotton SGK9708 crossed with different types. Cotton Sci (棉花学报), 2003, 15(6): 323-327 (in Chinese with English abstract)

[6] Wu Y T, Yin J M, Guo W Z, Zhu X F, Zhang T Z. Heterosis performance of yield and fiber quality in F1 and F2 hybrids in upland cotton. Plant Breed, 2004, 123: 285-289

[7] Liu L-W(刘芦苇), Zhu S-J(祝水金). Analysis of genetic effects and heterosis for yield and yield traits in transgenic insect resistant cotton (G. hirsutum L.). Cotton Sci (棉花学报), 2007, 19(1): 33-37 (in Chinese with English abstract)

[8] Wu J X , Jenkins J N, McCarty J C, Saha S, Percy R. Genetic association of lint yield with its components in cotton chromosome substitution lines. Euphytica, 2008, 164: 199-207

[9] Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王建康). Genetic System of Quantitative Traits in Plant (植物数量性状遗传体系). Beijing: Science Press, 2003 (in Chinese)

[10] Luo Q-Y(罗庆云), Yu B-J(於丙军), Liu Y-L(刘友良), Zhang Y-M(章元明), Xue Y-L(薛艳玲), Zhang Y(张艳). The mixed inheritance analysis of salt tolerance in cultivars GLYCINE MAX. Soybean Sci (大豆科学), 2004, 23(4): 239-244 (in Chinese with English abstract)

[11] Li G-J(李广军), Cheng L-G(程利国), Zhang G-Z(张国政), He X-H(何小红), Zhi H-J(智海剑), Zhang Y-M(章元明). Mixed major-gene plus polygenes inheritance analysis for resistance in soybean to bean pyralid (Lamprosema indicata Fabricius). Soybean Sci (大豆科学), 27(1): 33-41 (in Chinese with English abstract)

[12] Li Y-S(李余生), Zhu Z(朱镇), Zhang Y-D(张亚东), Zhao L(赵凌), Wang C-L(王才林). Genetic analysis of rice false smut resistance using major gene plus polygene mixed genetic model. Acta Agron Sin (作物学报), 2008, 34(10): 1728-1733 (in Chinese with English abstract)

[13] Wu J-Z(吴纪中), Yan W(颜伟), Cai S-B(蔡士宾), Ren L-J(任丽娟), Tang T(汤颋). Genetic analysis of sharp eyespot resistance by using major gene plus polygene mixed inheritance analysis in wheat (Triticum aestivum). Jiangsu J Agric Sci (江苏农业学报), 2005, 21(1): 6-11 (in Chinese with English abstract)

[14] Ge X-X(葛秀秀), Zhang L-P(张立平), He Z-H(何中虎), Zhang Y-M(章元明). The mixed inheritance analysis of polyphenol oxidase activities in winter wheat. Acta Agron Sin (作物学报), 2004, 30(1): 18-20 (in Chinese with English abstract)

[15] Yin J-M(殷剑美), Wu Y-T(武耀廷), Zhu X-F(朱协飞), Zhang T-Z(张天真). Genetic analysis of yield traits and fiber qualities by using major gene plus polygene mixed inheritance model in upland cotton (G. hirsutum L.). Cotton Sci (棉花学报), 2003, 15(2): 67-72 (in Chinese with English abstract)

[16] Zhang P-T(张培通), Zhu X-F(朱协飞), Guo W-Z(郭旺珍), Yu J-Z(俞敬忠), Zhang T-Z(张天真). Genetic analysis of yield and its components for high yield cultivar Simian 3 in G. hirsutum L. Acta Agron Sin (作物学报), 2006, 32(7): 1011-1017 (in Chinese with English abstract)

[17] Bao H-P(包和平), Wang X-L(王晓丽), Li C-C(李春成), Yang G(杨光), Zhang L-P(张丽萍). Mixed inheritance analysis of major gene-poly gene of Bt-resistance on maize. J Jilin Agric Univ (吉林农业大学学报), 2007, 29(3): 253-255 (in Chinese with English abstract)

[18] Gu H(顾慧), Qi C-K(戚存扣). Genetic analysis of lodging resistance with mixed model of major gene plus polygene in Brassica napus L. Acta Agron Sin (作物学报), 2008, 34(3): 376-381 (in Chinese with English abstract)

[19] Li C-Q(李成奇), Guo W-Z(郭旺珍), Ma X-L(马晓玲), Zhang T-Z(张天真). Tagging and mapping of QTL for yield and its components in upland cotton (Gossypium hirsutum L.) population with varied lint percentage. Cotton Sci (棉花学报), 2008, 20(3): 163-169 (in Chinese with English abstract)

[20] S L(宋丽), Guo W-Z(郭旺珍), Zhang T-Z(张天真). Genetic study on the lint percentage trait in upland cotton using dominant fuzzless mutant N1. Mol Plant Breed (分子植物育种), 2008, 6(6): 1101-1106 (in Chinese with English abstract)

[21] PAN J-J(潘家驹). Cotton Breeding (棉花育种学). Beijing: China Agriculture Press, 1998, p 151 (in Chinese)

[22] Zhu J(朱军). General genetic models and new analysis methods for quantitative traits. J Zhejiang Agric Univ (浙江农业大学学报), 1994, 551-559 (in Chinese with English abstract)

[23] Mo H-D(莫惠栋). Path coefficient and its application. J Jiangsu Agric Coll (江苏农学院学报), 1983, 4(1): 45-51 (in Chinese)

[24] Kearsey M J, Farquhar A G. QTL analysis in plants: Where are we now? Heredity, 1998, 80: 137-142

[25] Abdurakhmonov I Y, Buriev Z T, Saha S, Pepper A E, Musaev J A, Almatov A, Shermatov S E, Kushanov F N, Mavlonov G T, Reddy U K, Yu J Z, Jenkins J N, Kohel R J, Abdukarimov A. Microsatellite markers associated with lint percentage trait in cotton, Gossypium hirsutum. Euphytica, 2007, 156: 141-156

[26] Hallauer A R, Miranda J B. Quantitative Genetics in Maize Breeding. Ames, Iowa: Iowa State University Press, 1981

[27] Zhou Y-Y(周有耀). Genetic analysis of yield and fiber characters in upland cotton. Acta Agric Univ Pekinensis (北京农业大学学报), 1988, 14: 135-141 (in Chinese with English abstract)

[28] Zhang D-G(张德贵), Kong F-L(孔繁玲), Zhang Q-Y(张群远), Liu W-X(刘文欣), Yang F-X(杨付新), Xu N-Y(许乃银), Liao Q(廖琴), Zou K(邹奎). Genetic improvement of cotton varieties in the Yangtze Valley in China since 1950s: I. Improvement on yield and yield components. Acta Agron Sin (作物学报), 2003, 29(2): 208-215 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!