作物学报 ›› 2014, Vol. 40 ›› Issue (07): 1141-1156.doi: 10.3724/SP.J.1006.2014.01141
• 综述 • 下一篇
徐恒恒1,黎妮2,刘树君1,王伟青1,王伟平2,张红1,程红焱1,宋松泉1,*
XU Heng-Heng 1,NI LI 2,LIU Shu-Jun 1,WANG Wei-Qing 1,WANG Wei-Ping2,ZHANG Hong1,CHENG Hong-Yan1,SONG Song-Quan 1,
摘要:
大多数有花植物通过有性生殖和产生种子繁衍后代, 种子的成功萌发和正常成苗决定植物物种的繁衍与生存。种子萌发容易受到机械伤害、病害和环境胁迫的影响, 是植物生活周期中最重要和最脆弱的阶段, 对于一年生和二年生植物则更为重要。种子萌发是一个复杂的多步骤过程, 在这个过程中静止的干燥种子迅速恢复代谢活性, 完成胚伸出周围结构的细胞事件, 以及为随后的幼苗生长做准备。本文综述了近年来种子萌发及其调控的研究进展, 主要包括种子萌发过程中的重要生理事件, 与种子萌发有关的蛋白合成、翻译后修饰和蛋白质组, 以及植物激素对种子萌发的调节。此外, 我们还提出了种子萌发的能量刺激假说, 此假说为回答植物学、农学和园艺学中的两个基本问题, 即胚怎样从它的周围结构中伸出完成萌发?胚的伸出怎样被阻断以至于种子被维持在休眠状态?以及减少禾谷类作物种子和粮食生产中发生的穗萌现象提供了新的研究思想。
[1]Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. Annu Rev Plant Biol, 2012, 63: 507–533[2]Weitbrecht K, Müller K, Leubner-Metzger G. First off the mark: early seed germination. J Exp Bot, 2011, 62: 3289–3309[3]Bewley J D, Bradford K J, Hilhorst H W M, Nonogaki H. Physiology of Development, Germination and Dormancy, 3rd edn. New York: Springer, 2013[4]Gubler F, Millar A A, Jacobsen J V. Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol, 2005, 8: 183–187[5]宋松泉. 种子休眠. “10000个科学难题”农业科学编委会. 10000个科学难题. 北京: 科学出版社, 2011. pp 31–35Song S Q. Seed dormancy. In: The Editorial Board of Agricultural Science for 10000 Selected Problems in Sciences, ed. 10000 Selected Problems in Sciences. Beijing: Science Press, 2011. pp 31–35 (in Chinese)[6]Nonogaki H, Bassel G W, Bewley J D. Germination–still a mystery. Plant Sci, 2010, 179: 574–581[7]Obroucheva N V, Antipova O V. Physiology of the initiation of seed germination. Russian J Plant Physiol, 1997, 44: 250–264[8]Krishnan P, Joshi D K, Nagarajan S, Moharir A V. Characterization of germinating and non-viable soybean seeds by nuclear magnetic resonance (NMR) spectroscopy. Seed Sci Res, 2004, 14: 355–362[9]Nonogaki H. Seed Germination and Reserve Mobilization. Encyclopedia of Life Sciences, Chichester: John Wiley & Sons Ltd, 2008[10]Manz B, Müller K, Kucera B, Volke F, Leubner-Metzger G. Water uptake and distribution in germinating tobacco seeds investigated in vivo by nuclear magnetic resonance imaging. Plant Physiol, 2005, 138: 1538–1551[11]Rathjen J R, Strounina E V, Mares D J. Water movement into dormant and nondormant wheat (Triticum aestivum L.) grains. J Exp Bot, 2009, 60: 1619–1631[12]Terskikh V V, Feurtado J A, Ren C, Abrams S A, Kermode A R. Water uptake and oil distribution during imbibition of seeds of western white pine (Pinus monticola Dougl. ex D. Don) monitored in vivo using magnetic resonance imaging. Planta, 2005, 221: 17–27[13]Robert C, Noriega A, Tocino A, Cervantes E. Morphological analysis of seed shape in Arabidopsis thaliana reveals altered polarity in mutants of the ethylene signaling pathway. J Plant Physiol, 2008, 165: 911–919[14]Joosen R V L, Ligterink W, Dekkers B J W, Hilhorst H W M. Visualization of molecular processes associated with seed dormancy and germination using MapMan. Seed Sci Res, 2010, 21: 143–152[15]Grelet J, Benamar A, Teyssier E, Avelange-Macherel M H, Grunwald D, Macherel D. Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol, 2005, 137: 157–167[16]Tolleter D, Jaquinod M, Mangavel C, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macherel M H, Macherel D. Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell, 2007, 19: 1580–1589[17]Boubriak I, Pouschuk V, Grodzinsky A, Osborne D J. Telomeres and seed banks. Tsitologiia i Genetika, 2007, 41: 23–29[18]Bray C M, West C E. DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol, 2005, 168: 511–528[19]Waterworth W M, Masnavi G, Bhardwaj R M, Jiang Q, Bray C M, West C. A plant DNA ligase is an important determinant of seed longevity. Plant J, 2010, 63: 848–860[20]Macovei A, Balestrazzi A, Confalonieri M, Faé M, Carbonera D. New insights on the barrel medic MtOGG1 and MtFPG functions in relation to oxidative stress response in planta and during seed imbibition. Plant Physiol Biochem, 2011, 49: 1040–1050[21]Hunt L, Holdsworth M J, Gray J E. Nicotinamidase activity is important for germination. Plant J, 2007, 51: 341–351[22]Dinkins R D, Majee S M, Nayak N R, Martin D, Xu Q, Belcastro M P, Houtz R L, Beach C M, Downie A B. Changing transcriptional initiation sites and alternative 5'- and 3'-splice site selection of the first intron deploys Arabidopsis PROTEIN ISOASPARTYL METHYLTRANSFERASE2 variants to different subcellular compartments. Plant J, 2008, 55: 1–13[23]Ogé L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin J P, Job D, Jullien M, Grappin P. Protein repair L-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis. Plant Cell, 2008, 20: 3022–3037[24]Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J, 2005, 41: 697–709[25]Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close T J, Stitt M, Graner A, Wobus U. Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol, 2008, 146: 1738–1758[26]Howell K A, Narsai R, Carroll A, Ivanova A, Lohse M, Usadel B, Millar A H, Whelan J. Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiol, 2009, 149: 961–980[27]Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D. The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol, 2004, 134: 1598–1613[28]Sano N, Permana H, Kumada R, Shinozaki Y, Tanabata T, Yamada T, Hirasawa T, Kanekatsu M. Proteomic analysis of embryonic proteins synthesized from long-lived mRNAs during germination of rice seeds. Plant Cell Physiol, 2012, 53: 687–698[29]He D L, Han C, Yang P F. Gene expression profile changes in germinating rice. J Integr Plant Biol, 2011a, 53: 835–844[30]Gallardo K, Job C, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol, 2001, 126: 835–848[31]Gallardo K, Job C, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol, 2002, 129: 823–837[32]Job C, Rajjou L, Lovigny Y, Belghazi M, Job D. Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol, 2005, 138: 790–802[33]Yang P F, Li X J, Wang X Q, Chen H, Chen F, Shen S H. Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics, 2007, 7: 3358–3368[34]He D L, Han C, Yao J L, Shen S H, Yang P F. Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics, 2011, 11: 2693–2713[35]Huang H, Møller I M, Song S Q. Proteomics of desiccation tolerance during development and germination of maize embryos. J Proteomics, 2012, 75: 1247–1262[36]Wang W Q, Møller I M, Song S Q. Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. J Proteomics, 2012, 77: 68–86[37]Sheoran I S, Olson D J H, Ross A R S, Sawhney V K. Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteomics, 2005, 5: 3752–3764[38]Maltman D J, Gadd S M, Simon W J, Slabas A R. Differential proteomic analysis of the endoplasmic reticulum from developing and germinating seeds of castor (Ricinus communis) identifies seed protein precursors as significant components of the endoplasmic reticulum. Proteomics, 2007, 7: 1513–1528[39]Yang M F, Liu X J, Liu Y, Chen H, Chen F, Shen S H. Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas. J Proteome Res, 2009, 8: 1441–1451[40]Sghaier-Hammami B, Valledor L, Drira N, Jorrin-Novo J V. Proteomic analysis of the development and germination of date palm (Phoenix dactylifera L.) zygotic embryos. Proteomics, 2009, 9: 2543–2554[41]Kim S T, Kang S Y, Wang Y, Kim S G, Hwang D H, Kang K Y. Analysis of embryonic proteome modulation by GA and ABA from germination rice seeds. Proteomics, 2008, 8: 3577–3587[42]Kim S T, Wang Y, Kang S Y, Kim S G, Rakwal R, Kim Y C, Kang K Y. Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germination. J Proteome Res, 2009, 8: 3598–3605[43]Ravanel S, Gakière G, Job D, Douce R. The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA, 2008, 95: 7805–7812[44]Takahashi H, Kopriva S, Giordano M, Saito K, Hell R. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol, 2011, 62: 157–184[45]Lu T C, Meng L B, Yang C P, Liu G F, Liu G J, Ma W, Wang B C. A shotgun phosphoproteomics analysis of embryos in germinated maize seeds. Planta, 2008, 228: 1029–1041[46]Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol, 2006, 141: 910–923[47]Kucera B, Cohn M A, Leubner-Metzger G L. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2005, 15: 282–307[48]Arc E, Galland M, Cueff G, Godin B, Lounifi I, Job D, Rajjou L. Reboot the system thanks to protein post-translational modifications and proteome diversity: how quiescent seeds restart their metabolism to prepare seedling establishment. Proteomics, 2011, 11: 1606–1618[49]Buchanan B B, Balmer Y. Redox regulation: a broadening horizon. Annu Rev Plant Biol, 2005, 56: 187–220[50]Alkhalfioui F, Renard M, Vensel W H, Wong J, Tanaka C K, Hurkman W, Buchanan B B, Montrichard F. Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds. Plant Physiol, 2007, 144: 1559–1579[51]Kranner I, Roach T, Beckett R P, Whitaker C, Minibayeva F V. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J Plant Physiol, 2010, 167: 805–811[52]Brock A K, Willmann R, Kolb D, Grefen L, Lajunen H M, Bethke G, Lee J, Nürnberger T, Gust A A. The Arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression. Plant Physiol, 2010, 153: 1098–1111[53]Montoya-Garcia L, Munoz-Ocotero V, Aguilar R, Sanchez de Jimenez E. Regulation of acidic ribosomal protein expression and phosphorylation in maize. Biochemistry, 2002, 41: 10166–10172[54]Moreau M, Lindermayr C, Durner J, Klessig D F. NO synthesis and signaling in plants—where do we stand? Physiol Plant, 2010, 138: 372–383[55]Liu Y, Ye N, Liu R, Chen M, Zhang J. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot, 2010, 61: 2979–2990[56]Jasid S, Simontacchi M, Puntarulo S. Exposure to nitric oxide protects against oxidative damage but increases the labile iron pool in sorghum embryonic axes. J Exp Bot, 2008, 59: 3953–5962[57]Ischiropoulos H. Protein tyrosine nitration—an update. Arch Biochem Biophys, 2009, 484: 117–121[58]Corpas F J, del Río L A, Barroso J B. Need of biomarkers of nitrosative stress in plants. Trends Plant Sci, 2007, 12: 436–438[59]Lozano-Juste J, Colom-Moreno R, León J. In vivo protein tyrosine nitration in Arabidopsis thaliana. J Exp Bot, 2011, 62: 3501–3517[60]Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y. Abscisic acid and the control of seed dormancy and germination. Seed Sci Res, 2010, 20: 55–67[61]Graeber K, Linkies A, Müller K, Wunchova A, Rott A, Leubner-Metzger G. Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Mol Biol, 2010, 73: 67–87[62]Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E. CYP707A1 and CYP707A2, which encode ABA 8'-hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis. Plant Physiol, 2006, 141: 97–107[63]Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo T, Mochizuki Y, Toyoda T, Kamiya Y, Shinozaki K, Nambara E, Seki M. Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J, 2010, 62: 39–51[64]Ali-Rachedi S, Bouinot D, Wagner M H, Bonnet M, Sotta B, Grappin P, Jullien M. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta, 2004, 219: 479–488[65]Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol, 2005, 56: 165–185[66]Millar A A, Jacobsen J V, Ross J J, Helliwell C A, Poole A T, Scofield G, Reid J B, Gubler F. Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8'-hydroxylase. Plant J, 2006, 45: 942–954[67]Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J. Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol, 2009, 183: 1030–1042[68]Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol, 2009, 50: 1786–1800[69]Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, Renou J P, Sotta B, Kamiya Y, Nambara E, Troung H N. The Arabidopsis abscisic acid catabolism gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiol, 2009, 149: 949–960[70]Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N, Iuchi S, Kobayashi M, Yamaguchi S, Kamiya Y, Nambara E, Kawakami N. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol, 2008, 146: 1368–1385[71]Gosti F, Beaudoin N, Serizet C, Webb A A R, Vartanian N, Giraudat J. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell, 1999, 11: 1897–1909[72]Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T, Shinozaki K, Hirayama T. ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol, 2006, 140: 115–126[73]Fujii H, Zhu J K. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci USA, 2009, 106: 8380–8385[74]Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokora S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol, 2009, 50: 1345–1363[75]Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S Y, Cutler S R, Sheen J, Rodriguez P L, Zhu J K. In vitro reconstitution of an abscisic acid signalling pathway. Nature, 2009, 462: 660–664[76]Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA, 2009, 106: 17588–17593[77]McCourt P, Creelman R. The ABA receptors – we report you decide. Curr Opin Plant Biol, 2008, 11: 474–478[78]Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 2009, 324: 1064–1068[79]Pandey S, Nelson D C, Assmann S M. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell, 2009, 136: 136–148[80]Park S Y, Fung P, Nishimura N, Jensen D R, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T F, Alfred S E, Bonetta D, Finkelstein R, Provart N J, Desveaux D, Rodriguez P L, McCourt P, Zhu J K, Schroeder J I, Volkman B F, Cutler S R. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009, 324: 1068–1071[81]Holdsworth M J, Bentsink L, Soppe W J J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol, 2008, 179: 33–54[82]Lopez-Molina L, Mongrand S, Chua N H. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA, 2001, 98: 4782–4787[83]Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell, 2003, 15: 1591–1604[84]Hauvermale A L, Ariizumi T, Steber C M. Gibberellin signalling: a thene and variations on DELLA repression. Plant Physiol, 2012, 160: 83–92[85]Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal G K, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 2004, 134: 1642–1653[86]Appleford N E J, Wilkinson M D, Ma Q, Evans D J, Stone M C, Pearce S P, Powers S J, Thomas S G, Jones H D, Phillips A L, Hedden P, Lenton J. Decreased shoot stature and grain α-amylase activity following ectopic expression of a gibberellin 2-oxidase gene in transgenic wheat. J Exp Bot, 2007, 58: 3213–3226[87]Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I C, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693–698[88]Chandler P M, Harding C A, Ashton A R, Mulcair M D, Dixon N E, Mander L N. Characterization of gibberellin receptor mutants of barley (Hordeum vulgare L.). Mol Plant, 2008, 1: 285–294[89]Iuchi S, Suzuki H, Kim Y C, Iuchi A, Kuromori T, Ueguchi-Tanaka M, Asami T, Yamaguchi I, Matsuoka M, Kobayashi M, Nakajima M. Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. Plant J, 2007, 50: 958–966[90]Willige B C, Ghosh S, Nill C, Zourelidou M, Dohmann E M N, Maier A, Schwechheimer C. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell, 2007, 19: 1209–1220[91]Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell, 2002, 14: 57–70[92]Ariizumi T, Lawrence P K, Steber C M. The role of two F-box proteins, SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling. Plant Physiol, 2011, 155: 765–775[93]Wang F, Deng X W. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Res, 2011, 21: 1286–1294[94]Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004, 55: 555–590[95]Ariizumi T, Steber C M. Seed germination of GA-insensitive sleepy1 mutants does not require RGL2 protein disappearance in Arabidopsis. Plant Cell, 2007, 19: 791–804[96]Zhang Z L, Ogawa M, Fleet C M, Zentella R, Hu J, Heo J O, Lim J, Kamiya Y, Yamaguchi S, Sun T P. SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proc Natl Acad Sci USA, 2011, 108: 2160–2165[97]Hussain A, Cao D, Cheng H, Wen Z, Peng J. Identification of the conserved serine/threonine residues important for gibberellin sensitivity of Arabidopsis RGL2 protein. Plant J, 2005, 44: 88–99[98]Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell, 2010, 22: 2680–2696[99]Cui H, Benfey P N. Interplay between SCARECROW, GA and LIKE HETEROCHROMATIN PROTEIN 1 in ground tissue patterning in the Arabidopsis root. Plant J, 2009, 58: 1016–1027[100]Ariizumi T, Steber C M. Mutations in the F-box gene SNEEZY result in decreased Arabidopsis GA signaling. Plant Signal Behav, 2011, 6: 831–833[101]Ueguchi-Tanaka M, Hirano K, Hasegawa Y, Kitano H, Matsuoka M. Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant. Plant Cell, 2008, 20: 2437–2446[102]Ariizumi T, Murase K, Sun T P, Steber C M. Proteolysis independent down-regulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell, 2008, 20: 2447–2459[103]Yamamoto Y, Hirai T, Yamamoto E, Kawamura M, Sato T, Kitano H, Matsuoka M, Ueguchi-Tanaka M. A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins. Plant Cell, 2010, 22: 3589–3602[104]Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P, Thomas S G. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006, 18: 3399–3414[105]Fu X, Richards D E, Fleck B, Xie D, Burton N, Harberd N P. The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell, 2004, 16: 1406–1418[106]Dai C, Xue H W. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO J, 2010, 29: 1916–1927[107]Swain S M, Tseng T S, Olszewski N E. Altered expression of SPINDLY affects gibberellin response and plant development. Plant Physiol, 2001, 126: 1174–1185[108]Shimada A, Ueguchi-Tanaka M, Sakamoto T, Fujioka S, Takatsuto S, Yoshida S, Sazuka T, Ashikari M, Matsuoka M. The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J, 2006, 48: 390–402[109]Filardo F, Robertson M, Singh D P, Parish R W, Swain S M. Functional analysis of HvSPY, a negative regulator of GA response, in barley aleurone cells and Arabidopsis. Planta, 2009, 229: 523–537[110]Silverstone A L, Tseng T S, Swain S M, Dill A, Jeong S Y, Olszewski N E, Sun T P. Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis. Plant Physiol, 2007, 143: 987–1000[111]Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol, 1984, 35: 155–189[112]Chiwocha S D S, Cutler A J, Abrams S R, Ambrose S J, Yang J, Ross A R S, Kermode A R. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J, 2005, 42: 35–48[113]Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Hess B, Machackova I, Fischer U, Leubner-Metzger G. 1-aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot, 2007, 58: 3047–3060[114]Lin Z, Zhong S, Grierson D. Recent advances in ethylene research. J Exp Bot, 2009, 60: 3311–3336[115]Petruzzelli L, Coraggio I, Leubner-Metzger G. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclopropane-1-carboxylic acid oxidase. Planta, 2000, 211: 144–149[116]Petruzzelli L, Sturaro M, Mainieri D, Leubner-Metzger G. Calcium requirement for ethylene-dependent responses involving 1-aminocyclopropane-1-carboxylic acid oxidase in radicle tissues of germinated pea seeds. Plant Cell Environ, 2003, 26: 661–671[117]Iglesias-Fernández R, Matilla A. Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germination of Sisymbrium officinale L. seeds. Planta, 2010, 231: 653–664[118]Matilla A J, Matilla-Vázquez M A. Involvement of ethylene in seed physiology. Plant Sci, 2008, 175: 87–97[119]Linkies A, Leubner-Metzger G. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep, 2012, 31: 253–270[120]Morris K, Linkies A, Müller K, Oracz K, Wang X, Lynn J R, Leubner-Metzger G, Finch-Savage W E. Regulation of seed germination in the close Arabidopsis relative Lepidium sativum: a global tissue-specific transcript analysis. Plant Physiol, 2011, 155: 1851–1870[121]Rentzsch S, Podzimska D, Voegele A, Imbeck M, Müller K, Linkies A, Leubner-Metzger G. Dose- and tissue-specific interaction of monoterpenes with the gibberellin-mediated release of potato tuber bud dormancy, sprout growth and induction of α-amylases and β-amylases. Planta, 2012, 235: 137–151[122]Rohde A, Ruttink T, Hostyn V, Sterck L, Van Driessche K, Boerjan W. Gene expression during the induction, maintenance, and release of dormancy in apical buds of poplar. J Exp Bot, 2007, 58: 4047–4060[123]Holdsworth M J, Finch-Savage W E, Grappin P, Job D. Postgenomics dissection of seed dormancy and germination. Trends Plant Sci, 2008b, 13: 7–13[124]Romanel E A, Schrago C G, Counago R M, Russo C A, Alves-Ferreira M. Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification. PloS One, 2009, 4(6): DOI:10.1371/journal.pone.0005791[125]Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y, North H, Marion-Poll A, Sun T P, Koshiba T, Kamiya Y, Yamaguchi S, Nambara E. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J, 2006, 48: 354–366[126]Dong T T, Tong J H, Xiao L T, Cheng H Y, Song S Q. Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination. Plant Growth Regul, 2012, 66: 191–202[127]Calvo A P, Nicolás C, Nicolás G, Rodríguez D. Evidence of a cross-talk regulation of a GA20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. Physiol Plant, 2004, 120: 623–630[128]Iglesias-Fernández R, Matilla A. After-ripening alters the gene expression pattern of oxidases involved in the ethylene and gibberellin pathways during early imbibition of Sisymbrium officinale L. seeds. J Exp Bot, 2009, 60: 1645–1661[129]Barroco R M, Van Poucke K, Bergervoet J H W, De Veylder L, Groot S P C, Inze D, Engler G. The role of the cell cycle machinery in resumption of postembryonic development. Plant Physiol, 2005, 137: 127–140[130]Mei Y Q, Song S Q. Early morphological and physiological events occurring during germination of maize seeds. Agric Sci China, 2008, 7: 950–957[131]Gimeno-Gilles C, Lelievre E, Viau L, Malik-Ghulam M, Ricoult C, Niebel A, Leduc N, Limami A M. ABA-mediated inhibition of germination is related to the inhibition of genes encoding cell-wall biosynthetic and architecture-modifying enzymes and structural proteins in Medicago truncatula embryo axis. Mol Plant, 2009, 2: 108–119[132]Sliwinska E, Bassel G W, Bewley J D. Germination of Arabidopsis thaliana seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocotyls. J Exp Bot, 2009, 60: 3587–3594[133]Schopfer P. Biomechanics of plant growth. Am J Bot, 2006, 93: 1415–1425[134]Bethke P C, Libourel I G L, Aoyama N, Chung Y Y, Still D W, Jones R L. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol, 2007, 143: 1173–1188[135]Chen F, Bradford K J. Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol, 2000, 124: 1265–1274[136]Chen F, Dahal P, Bradford K J. Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol, 2002, 127: 928–936 |
[1] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[2] | 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107. |
[3] | 刘培勋,马小飞,万洪深,郑建敏,罗江陶,蒲宗君. 两个不同籽粒硬度小麦的比较蛋白组学分析[J]. 作物学报, 2020, 46(8): 1275-1282. |
[4] | 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30. |
[5] | 张双双,王立伟,姚楠,郭光艳,夏玉凤,秘彩莉. 水稻OsUBA基因的表达及其在促进种子萌发和开花中的功能[J]. 作物学报, 2019, 45(9): 1327-1337. |
[6] | 宋松泉,刘军,徐恒恒,张琪,黄荟,伍贤进. 乙烯的生物合成与信号及其对种子萌发和休眠的调控[J]. 作物学报, 2019, 45(7): 969-981. |
[7] | 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275. |
[8] | 宋奇琦,Pratiksha SINGH,Rajesh Kumar SINGH,宋修鹏,李海碧,农友业,杨丽涛,李杨瑞. 基于iTRAQ技术的甘蔗受黑穗病菌侵染蛋白组分析[J]. 作物学报, 2019, 45(1): 55-69. |
[9] | 严青青,张巨松,李星星,王燕提. 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响[J]. 作物学报, 2019, 45(1): 100-110. |
[10] | 常博文,钟鹏,刘杰,唐中华,高亚冰,于洪久,郭炜. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响[J]. 作物学报, 2019, 45(1): 118-130. |
[11] | 王道平,徐江,牟永莹,闫文秀,赵梦洁,马博,李群,张丽娜,潘映红. 表油菜素内酯影响水稻幼苗响应低温胁迫的蛋白质组学分析[J]. 作物学报, 2018, 44(6): 897-908. |
[12] | 朱广龙,宋成钰,于林林,陈许兵,智文芳,刘家玮,焦秀荣,周桂生. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制[J]. 作物学报, 2018, 44(11): 1713-1724. |
[13] | 田润苗, 张雪海, 汤继华, 白光红, 付志远. 玉米种子萌发相关性状的全基因组关联分析[J]. 作物学报, 2018, 44(05): 672-685. |
[14] | 邓昌哲,姚慧,安飞飞,李开绵,陈松笔. 木薯块根有色体分离及其蛋白质组学的研究[J]. 作物学报, 2017, 43(09): 1290-1299. |
[15] | DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346. |
|