[1]Rea P A, Poole R J. Vacuolar H+-translocating pyrophosphatase. Ann Rev Plant Physiol, 1993, 44: 157–180
[2]Nakanishi Y, Matsuda N, Aizawa K, Kashiyama T, Yamamoto K, Mimura T, Ikeda M, Maeshima M. Molecular cloning and sequencing of the cDNA for vacuolar H+-pyrophosphatase from Chara coralline. Biochim Biophys Acta, 1999, 1418: 245–250
[3]Baykov A A, Bakuleva N P, Rea P A. Steady-state kinetics of substrate hydrolysis by vacuolar H+-pyrophosphatase. A simple three-state model. Eur J Biochem, 1993, 217: 755–762
[4]Long A R, Williams L E, Nelson S J, Hall J L. Localization of membrane pyrophosphatase activity in Ricinus communis seedlings. J Plant Physiol, 1995, 146: 629–638
[5]Robinson D G, Haschke H P, Hinz G, Hoh B, Maeshima M, Marty F. Immunological detection of tonoplast polypeptides in the plasma membrane of pea cotyledons. Planta, 1996, 198: 95–103
[6]Robinson D G, Hoppenrath M, Oberbeck K, Luykx P, Ratajczak R. Localization of pyrophosphatase and V-ATPase in Chlamydomonas reinhardtii. Bot Acta, 1998, 111: 108–122
[7]Lerchl J, Geigenberger P, Stitt M, Sonnewald U. Impaired photoassimilate partitioning caused by phloem-specific removal of pyrophosphate can be complemented by a phloem-specific cytosolic yeast-derived invertase in transgenic plants. Plant Cell, 1995, 7: 259–270
[8]Jose R, Castineira P, Hernandez A, Drake R, Serrano. A plant proton-pumping inorganic pyrophosphatase functionally complements the vacuolar ATPase transport activity and confers bafilomycin resistance in yeast. Biochem J, 2011, 437: 269–278
[9]Blumwald E. Tonopast vesicles for the study of ion transport in plant vacuoles. Plant, 1987, 69: 731–734
[10]Hedrich R, Schroeder J I. The physiology of ion channels and electrogenic pumps in higher plants. Ann Rev Plant Physiol, 1989, 40: 539–569
[11]Guo S L, Yin H B, Zhang X, Zhao F Y, Li P H, Chen S H, Zhao Y X, Zhang H. Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol, 2006, 60: 41–50
[12]Sun Q H, Gao F, Zhao L, Li K P, Zhang J R. Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila. BMC Plant Biol, 2010, 10: 1471–2290
[13]Liu L, Wang Y, Wang N, Dong Y Y, Fan X D, Liu X M, Yang J, Li H Y. Cloning of a Vacuolar H+-pyrophosphatase gene from the halophyte Suaeda corniculata whose heterogonous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis. J Integr Plant Biol, 2011, 53: 731–742
[14]Bhaskaran S, Savithramma D L. Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot, 2011, 62: 5561–5570
[15]Park S H, Li J S, Pittman J K, Berkowitz G A, Yang H B, Undurraga S, Morris J, Hirschi K D, Gaxiola R A. Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. PNAS, 2005, 102: 18830–18835
[16]Zhang H, Shen G X, Kuppu S, Gaxiola R, Payton P. Creating drought- and salt-tolerant cotton by overexpressing a vacuolar pyrophosphatase gene. Plant Signal Behav, 2011, 6:6: 861–863
[17]Pasapula V, Shen G X, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X Y, Zhu L F, Zhang X L, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J, 2011, 9: 88–99
[18]Dong Q L, Liu D D, An X H, Hu D G, Yao Y X, Hao Y J. MdVHP1 encodes an apple vacuolar H+-PPase and enhances stress tolerance in transgenic apple callus and tomato. J Plant Physiol, 2011, 168: 2124–2133
[19]Zhang J, Li J Q, Wang X C, Chen J. OVP1, a Vacuolar H+-translocating inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance. Plant Physiology and Biochemistry, 2011, 49: 33–38
[20]Kabala K, Janicka-Russak M, Klobus G. Different responses of tonoplast proton pumps in cucumber roots to cadmium and copper. J Plant Physiol, 2010, 167: 1328–1335
[21]Migocka M, Papierniak A, Kosatka E, Klobus G. Comparative study of the active cadmium efflux systems operating at the plasma membrane and tonoplast of cucumber root cells. J Exp Bot, 2011, 62: 4903–4916
[22]Khoudi H, Maatar Y, Gouiaa S, Masmoudi K. Transgenic tobacco plants expressing ectopically wheat H+-pyrophosphatase (H+-PPase) gene TaVP1 show enhanced accumulation and tolerance to cadmium. J Plant Physiol, 2012, 169: 98–103
[23]Li J S, Yang H B, Peer W A, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards E L, Krizek B, Murphy A S, Gilroy S, Gaxiola R. Arabidopsis H+-PPase AVP1 regulates Auxin-mediated organ development. Science, 2005, 310: 121–125
[24]Yao Y X, Dong Q L, You C X, Zhai H, Hao Y J. Expression analysis and functional characterization of apple MdVHP1 gene reveals its involvement in Na+, malate and soluble sugar accumulation. Plant Physiol Biochem, 2011, 49: 1201–1208
[25]Krebs M, Beyhl D, Gorlich E, Al-Rasheid K A S, Marten I, Stierhof Y D, Hedrich R, Schumacher K. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc Natl Acad Sci USA, 2010, 107: 3251–3256
[26]Yang H B, Knapp J, Koirala P, Rajagopal D, Peer W A, Silbart L K, Murphy A, Gaxiola R A. Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotechnol J, 2007, 5: 735–745
[27]Stagljar I, Korostensky C, Johnsson N, te Heesen S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA, 1998, 95: 5187–5192
[28]李敏, 杨双, 阮燕晔, 樊金娟, 张立军. 拟南芥T DNA插入突变体atsuc3的PCR鉴定. 植物生理学通讯, 2006, 42: 91–94
Li M, Yang S, Ruan Y Y, Fan J J, Zhang L J. Identification of atsuc3 with T-DNA Insertion by PCR. Plant Physiol Commun, 2006, 42: 91–94 (in Chinese)
[29]Waizenegger I, Lukowitz W, Assaad F, Schwarz H, Jurgens G, Mayer U. The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Curr Biol, 2000, 10: 1371–1374
[30]Geldner N, Friml J, Stierhof Y D, Jurgens G, Palme K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 2001, 413: 425–428
[31]Surpin M, Raikhel N. Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol, 2004, 5: 100–109
[32]Molendijk A J, Ruperti B, Palme K. Small GTPases in vesicle trafficking. Curr Opin Plant Biol, 2004, 7: 694–700
[33]Vernoud V, Horton A C, Yang Z B, Nielsen E. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol, 2003, 131: 1191–1208
[34]Peng J L, Ilarslan H, Wurtele E S, Bassham D C. AtRabD2b and AtRabD2c have overlapping functions in pollen development and pollen tube growth. BMC Plant Biol, 2011, 11: 25
[35]Mazel A, Leshem Y, Tiwari B S, Levine A. induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol, 2004, 134: 118–128
[36]White P J, Marshall J, Smith J A C. Substrate kinetics of the tonoplast H+-translocating inorganic pyrophosphatase and its activation by free Mg2+. Plant Physiol, 1990, 93: 1063–1070
[37]Parvanova D, Ivanov S, Konstantinova T, Karanovc E, Atanassov A, Tsvetkov T, Alexieva V, Djilianov D. Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem, 2004, 42: 57–63
[38]Boguski M S, McCormick F. Proteins regulating Ras and its relatives. Nature, 1993, 366: 643–654
[39]Takai Y, Sasaki T, Matozaki T: Small GTP-binding proteins. Physiol Rev, 2001, 81: 153–208
[40]Preuss M L, Serna J, Falbel T G, Bednarek S Y, Nielsen E. The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells. Plant Cell, 2004, 16: 1589–1603 |