[1]Otto S P. The evolutionary consequences of polyploidy. Cell, 2007, 131: 452–462
[2]宋灿, 刘少军, 肖军, 何伟国, 周毅, 覃钦博, 张纯, 刘筠. 多倍体生物研究进展. 中国科学C辑(生命科学), 2012, 42: 173–184
Song C, Liu S J, Xiao J, He W G, Zhou Y, Qin Q B, Zhang C, Liu J. Polyploidy organisms. Sci China (Ser C: Life Sci), 2012, 42: 173–184 (in Chinese with English abstract)
[3]赵旭博, 李爱丽, 毛龙. 植物多倍化过程中小分子RNA调控基因表达机制研究进展. 作物学报, 2013, 39: 1331–1338
Zhao X B, Li A L, Mao L. Progress on gene regulatory mechanisms by small RNAs during plant polyploidization. Acta Agron Sin, 2013, 39: 1331–1338 (in Chinese with English abstract)
[4]Jiao Y, Wickett N J, Ayyampalayam S, Chanderbali A S, Landherr L, Ralph P E, Tomsho L P, Hu Y, Liang H, Soltis P S, Soltis D E, Clifton S W, Schlarbaum S E, Schuster S C, Ma H, Leebens-Mack J, Pamphilis C W. Ancestral polyploidy in seed plants and angiosperms. Nature, 2011, 473: 97–100
[5]Feldman M, Levy A A. Genome evolution due to allopolyploidization in wheat. Genetics, 2012, 192: 763–774
[6]Adams K L, Wendel J F. Polyploidy and genome evolution in plants. Curr Opin Plant Biol, 2005, 8: 135–141
[7]Higgins J, Magusin A, Trick M, Fraser F, Bancroft I. Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genomics, 2012, 13: 247
[8]彭海, 张静, 吴先军. 植物基因表达中的倍性效应: 研究进展、问题与展望. 中国科学C辑(生命科学), 2008, 38: 1–7
Peng H, Zhang J, Wu X J. The ploidy effect of plant gene expression: research progress, problem and expectation. Sci China (Ser C: Life Sci), 2008, 38: 1–7 (in Chinese with English abstract)
[9]蔡得田, 陈建国, 陈冬玲, 戴兵成, 张维, 宋兆建, 杨之帆, 杜超群, 唐志强, 何玉池, 张道生, 何光存, 朱英国. 两个具多倍体减数分裂稳定性的多倍体水稻品系的选育. 中国科学C辑(生命科学), 2007, 37: 217–226
Cai D T, Chen J G, Chen D L, Dai B C, Zhang W, Song Z J, Yang Z F, Du C Q, Tamg Z Q, He Y C, Zhang D S, He G C, Zhu Y G. Breeding of two polyploidy rice strains with meiotic stability. Sci China (Ser C: Life Sci), 2007, 37: 217–226 (in Chinese with English abstract)
[10]周汉群, 唐荣华, 周翠球, 钟瑞春, 韩柱强. 花生亲和种远缘杂交育种研究. 花生学报, 2003, 32(suppl): 155–161
Zhou H Q, Tang R H, Zhou C Q, Zhong R C, Han Z Q. Interspecific hybridization between cultivated peanut and compatible wild species in Arachis. J Peanut Sci, 2003, 32(suppl): 155–161 (in Chinese with English abstract)
[11]王纪娟, 杨淑娟, 任兰柱. 植物远缘杂交及其在小麦育种的应用. 粮食作物, 2010, (6): 109–113
Wang J J, Yang S J, Ren L Z. Wide hybridization of plant and its application in wheat breeding. Grain Crops, 2010, (6): 109–113 (in Chinese with English abstract)
[12]Lu J, Zhang C, Baulcombe D C, Chen Z J. Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc Nat Acad Sci USA, 2012, 109: 5529–5534
[13]Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, Levy A A. Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics, 2011, 188: 263–272
[14]Miller M, Zhang C, Chen Z J. Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents. Genes Genomes Genet, 2012, 2: 505–513
[15]Pumphrey M, Bai J, Laudencia-Chingcuanco D, Anderson O, Gill B S. Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics, 2009, 181: 1147–1157
[16]Chen Z J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol, 2007, 58: 377–406
[17]Wang J, Tian L, Lee H S, Wei N E, Jiang H, Watson B, Madlung A, Osborn T C, Doerge R W, Comai L, Chen Z J. Genome wide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics, 2006, 172: 507–517
[18]Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics, 2002, 160: 1651–1659
[19]He P, Friebe B R, Gill B S, Zhou J M. Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol, 2003, 52: 401–414
[20]Adams K L, Percifield R. Wendel J F. Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics, 2004, 168: 2217–2226
[21]Albertin W, Balliau T, Brabant P, Chevre A M, Eber F, Malosse C, Thiellement H. Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids. Genetics, 2006, 173: 1101–1113
[22]Hegarty M J, Jones J M, Wilson I D, Barker G L, Coghill J A, Sanchez-Baracaldo P, Liu G, Buggs R J, Abbott R J, Edwards K J, Hiscock S J. Development of anonymous cDNA microarrays to study changes to the Senecio floral transcriptome during hybrid speciation. Mol Ecol, 2005, 14: 2493–2510
[23]Zhuang Y, Chen J F. Changes of gene expression in early generations of the synthetic allotetraploid Cucumis×hytivus Chen et Kirkbride. Genet Resour Crop Evol, 2009, 56: 1071–1076
[24]Kochert G, Halward T, Branchi W D. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet, 1991, 81: 565–570
[25]Gimenes M A, Lopes C R, Valls F M. Genetic relationships among Arachis species based on AFLP. Genet Mol Biol, 2002, 25: 349–353
[26]Gimenes M A, Lopes C R, Galgaro M L, Valls J, Kochert G. RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae). Euphytica, 2002, 123: 421-429
[27]任小平, 廖伯寿, 黄家权, 张晓杰, 姜慧芳. 利用SRAP标记分析花生属花生区组种质亲缘关系. 中国油料作物学报, 2009, 31: 449–454
Ren X P, Liao B S, Huang J Q, Zhang X J, Jiang H F. Genomic affinities of Arachis section Arachis revealed by SRAP markers. Chin J Oil Crop Sci, 2009, 31: 449–454 (in Chinese with English abstract)
[28]Garcia G M, Tallury S, Kochert G S. Molecular analysis of Arachis interspecific hybrids. Theor Appl Genet, 2006, 112: 1342–1348
[29]贺梁琼, 熊发前, 钟瑞春, 韩柱强, 李忠, 唐秀梅, 蒋菁, 唐荣华, 何新华. 利用SCoT标记分析花生栽培种×A. chacoensis组合异源多倍化的早期基因组变化. 中国农业科学, 2013, 46: 1555–1563
He L Q, Xiong F Q, Zhong R C, Han Z Q, Li Z, Tang X M, Jiang J, Tang R H, He X H. Study on genome variations by using SCoT markers during allopolyploidization of the cultivated peanut × A. chacoensis. Sci Agric Sin, 2013, 46: 1555–1563 (in Chinese with English abstract)
[30]贺梁琼, 熊发前, 韩柱强, 韩柱强, 蒋菁, 唐秀梅, 李忠, 何新华, 唐荣华. 花生种间杂种异源多倍化早期世代性状和微卫星变化研究. 中国油料作物学报, 2013, 35: 499–507
He L Q, Xiong F Q, Han Z Q, Zhong R C, Jiang J, Tang X M, Li Z, He X H, Tang R H. Traits and microsatellites variation research of early generations during allopolyploidization in Arachis interspecific hybridization. Chin J Oil Crop Sci, 2013, 35: 499–507 (in Chinese with English abstract)
[31]Collard B C Y, Mackill D J. Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep, 2009, 27: 86–93
[32]Xiong F Q, Zhong R C, Han Z Q, Jiang J, He L Q, Zhuang W J, Tang R H. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol Biol Rep, 2011, 38: 3487–3494
[33]熊发前, 唐荣华, 陈忠良, 潘玲华, 庄伟建. 目标起始密码子多态性(SCoT): 一种基于翻译起始位点的目的基因标记新技术. 分子植物育种, 2009, 7: 635–638
Xiong F Q, Tang R H, Chen Z L, Pan L H, Zhuang W J. Start codon target polymorphism (SCoT): a novel gene targeted marker technique based on the translation start codon. Mol Plant Breed, 2009, 7: 635–638 (in Chinese with English abstract)
[34]熊发前, 蒋菁, 钟瑞春, 韩柱强, 贺梁琼, 李忠, 庄伟建, 唐荣华. 目标起始密码子多态性(SCoT)分子标记技术在花生属中的应用. 作物学报, 2010, 36: 2055–2061
Xiong F Q, Jiang J, Zhong R C, Han Z Q, He L Q, Li Z, Zhuang W J, Tang R H. Application of SCoT molecular marker in genus Arachis. Acta Agron Sin, 2010, 36: 2055–2061 (in Chinese with English abstract)
[35]陈虎, 何新华, 罗聪, 高美萍. 龙眼24个品种的SCoT遗传多样性分析. 园艺学报, 2010, 37: 1651–1654
Chen H, He X H, Luo C, Gao M P. Analysis on the genetic diversity of 24 longan (Dimocarpus longan) accessions by SCoT markers. Acta Hortic Sin, 2010, 37: 1651–1654 (in Chinese with English abstract)
[36]Luo C, He X H, Chen H, Ou S J, Gao M P, Brown J S, Tondo C T, Schnell R J. Genetic diversity of mango cultivars estimated using SCoT and ISSR markers. Biochem Syst Ecol, 2011, 39: 676–684
[37]Luo C, He X H, Chen H, Hu Y, Ou S J. Genetic relationship and diversity of Mangifera indica L.rrevealed through SCoT analysis. Genet Resour Crop Evol, 2012, 59: 1505–1515
[38]陈香玲, 苏伟强, 刘业强, 任惠, 陆玉英. 36份菠萝种质的遗传多样性SCoT分析. 西南农业学报, 2012, 25: 625–629
Chen X L, Su W Q, Liu Y Q, Ren H, Lu Y Y. Analysis on genetic diversity of 36 pineapple collections by SCoT markers. Southwest China J Agric Sci, 2012, 25: 625–629 (in Chinese with English abstract)
[39]吴建明, 李杨瑞, 王爱琴, 杨柳, 杨丽涛. 赤霉素诱导甘蔗节间伸长基因的 cDNA-SCoT差异表达分析. 作物学报, 2010, 36: 1883–1890
Wu J M, Li Y R, Wang A Q, Yang L, Yang L T. Differential expression of genes in gibberellin-induced stalk elongation of sugarcane analyzed with cDNA-SCoT. Acta Agron Sin, 2010, 36: 1883–1890 (in Chinese with English abstract)
[40]陈香玲, 李杨瑞, 杨丽涛, 吴建明, 罗聪, 熊发前, 杨柳. 低温胁迫下甘蔗抗寒相关基因的cDNA-SCoT差异显示. 生物技术通报, 2010, (8): 120–124
Chen X L, Li Y R, Yang L T, Wu J M, Luo C, Xiong F Q, Yang L. cDNA-SCoT differential display of cold resistance related genes in sugarcane under low temperature stress. Biotechnol Bull, 2010, (8): 120–124 (in Chinese with English abstract)
[41]熊发前, 刘俊仙, 王丛丛, 蒋菁, 钟瑞春, 韩柱强, 贺梁琼, 李忠, 唐秀梅, 唐荣华. mCTAB-dLiCl法高效提取花生各组织部位RNA及其验证. 南方农业学报, 2013, 44: 1781–1784
Xiong F Q, Liu J X, Wang C C, He L Q, Han Z Q, Jiang J, Zhong R C, Li Z, Tang X M, Tang R H. mCTAB-dLiCl method for efficiently extracting RNA from various tissues of cultivated peanut and its verification. J Southern Agric, 2013, 44: 1781–1784 (in Chinese with English abstract)
[42]Comai L, Tyagi A P, Winter K, Holmes-Davis R, Reynolds S H, Stevens Y, Byers B. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell, 2000, 12: 1551–1567
[43]Hegarty M J, Barker G L, Wilson I D, Abbott R J, Edwards K J, Hiscock S J. Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Curr Biol, 2006, 16: 1652–1659
[44]Auger D L, Gray A D, Ream T S, Kato A, Jr. E H C, Birchler J A. Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics, 2005, 169: 389–397
[45]Bennetzen J L. Transposable element contributions to plant gene and genome evolution. Plant Mol Biol, 2000, 42: 251–269 |