欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (07): 1017-1026.doi: 10.3724/SP.J.1006.2015.01017

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

谷子非特异性磷脂酶C基因SiNPC4的克隆及功能分析

胡利芹1,薛飞洋1,2,李微微1,3,王二辉1,2,徐兆师1,李连城1,周永斌1,2,贾冠清1,刁现民1,马有志1,陈明1,*   

  1. 1 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部麦类生物学与遗传育种重点实验室, 北京100081; 2 西北农林科技大学农学院 / 旱区作物逆境生物学国家重点实验室, 陕西杨凌 712100; 3 哈尔滨师范大学生命科学与技术学院 / 黑龙江省分子细胞遗传与遗传育种重点实验室, 黑龙江哈尔滨 150025
  • 收稿日期:2015-01-14 修回日期:2015-04-02 出版日期:2015-07-12 网络出版日期:2015-04-17
  • 通讯作者: 陈明, E-mail: chenming02@caas.cn, Tel: 13683360891
  • 基金资助:

    本研究由国家转基因新品种生物培育科技重大专项(2014ZX08002-002)和北京市科技计划项目(Z141100002314018)资助。

Cloning and Functional Analysis of Nonspecific Phospholipase C gene SiNPC4 in Foxtail Millet (Setaria italic)

HU Li-Qin1,XUE Fei-Yang1,2,LI Wei-Wei1,3,WANG Er-Hui1,2,XU Zhao-Shi1,LI Lian-Cheng1,ZHOU Yong-Bin1,2,JIA Guan-Qing1,DIAO Xian-Min1,MA You-Zhi1,CHEN Ming1,*   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; 2 College of Agronomy, Northwest A&F University / State Key Laboratory of Arid Region Crop Adversity Biology, Yangling 712100, China; 3 Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province / College of Life Science and Technology, Harbin Normal University, Harbin 150025, China?
  • Received:2015-01-14 Revised:2015-04-02 Published:2015-07-12 Published online:2015-04-17
  • Contact: 陈明, E-mail: chenming02@caas.cn, Tel: 13683360891

摘要:

非特异性磷脂酶C(NPCnonspecific phospholipase C)水解磷脂酰胆碱或磷脂酰乙醇胺产生第二信使二酰甘油(DAG), NPC基因在植物处于干旱、高盐、低磷等非生物胁迫条件下时发挥重要的作用,并参与脱落酸(ABA)、油菜素内酯(BL)等激素信号传导途径。本研究以谷子品种龙谷25为试验材料,通过序列比对,克隆到一个新的NPC类基因,命名为SiNPC4。该基因被定位在谷子第8条染色体上,编码区全长2877 bp,由3个外显子和2个内含子组成,编码512个氨基酸,蛋白分子量为56.77 kD。系统进化树分析表明该基因位于NPC基因家族第3亚族,保守结构域分析表明该蛋白含有保守的磷脂酶结构域和4个基序。亚细胞定位结果显示,SiNPC4蛋白被定位在细胞质、细胞膜、细胞核中。基因表达谱分析结果表明,该基因主要在谷子根部表达,并受干旱、盐、低温、黑暗、ABABL、赤霉素(GA)和茉莉酸甲酯(MeJA)等的诱导表达。将SiNPC4基因转入拟南芥中,基因拟南芥与野生型拟南芥相比对ABABL激素的敏感性降低,推测该基因可能作为负调控因子参与植物对ABABL激素的响应过程。在干旱和高盐处理下,过表达植株与野生型植株长势没有明显差异。

关键词: 谷子, SiNPC4, 逆境胁迫, ABA, BL

Abstract:

Nonspecific phospholipase C (NPC) catalyzes the hydrolysis of phosphatidylcholine or phosphatidylethanolamine to generate diacylglycerol (DAG), which is an important second messenger in cells. NPC family plays a key role in response to some stresses such as drought, high salinity and phosphorus deficiency, and is involved in some hormone signaling pathways such as abscisic acid (ABA) and brassinolide (BL). Taking foxtail millet as material, we cloned a novel NPC gene named SiNPC4 by sequence alignment. This gene was detected to be located on chromosome 8. The full length of SiNPC4 was 2877 bp with three exons and two introns encoding 512 amino acid residues and the protein molecular weight was 56.77 kD. Phylogenetic analysis of NPC protein sequences indicated that SiNPC4 distributed to the third subfamily. The predicted protein structure of the gene contained conserved phosphoesterase domain and four motifs. The protein subcellular localization analysis revealed that SiNPC4 was localized in cytomembrane, cytoplasm, and nucleus. The gene expression profile results indicated SiNPC4 mainly expressed in root and was induced by drought, salt, cold, dark, ABA, BL, methyl jasmonate (MeJA), and gibberellic acid (GA) treatments. Arabidopsis carrying SiNPC4 decreased the sensitivity to ABA and BL compared with WT. Thus, we deduced that SiNPC4 may act as a negative regulator in ABA and BL signaling pathways. Besides, there were no significant difference in growth between transgenic and wild type plants under drought and high salinity treatments.

Key words: Foxtail millet, SiNPC4, Abiotic stress, ABA, BL

[1]Wang X M. Plant phospholipases. Plant Mol Biol, 2001, 52: 211–31



[2]Li M, Hong Y, Wang X. Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim Biophys Acta, 2009, 1791: 927–935



[3]Xue H W, Chen X, Mei Y. Function and regulation of phospholipid signalling in plants. Biochem J, 2009, 421: 145–156



[4]Munnik T, Vermeer J E M. Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ, 2010, 33: 655–669



[5]Kenji Y, Toshiaki M, Toshiyuki T. Purification and characterization of membrane-bound inositol phospholipid-specific phospholipase C. Plant Physiol, 1993, 102: 165–172



[6]Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K i, Ohta H. A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem, 2004, 280: 7469–7476



[7]Peters C, Li M, Narasimhan R, Roth M, Welti R, Wang X. Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell, 2010, 22: 2642–2659



[8]Singh A, Kanwar P, Pandey A, Tyagi A K, Sopory S K, Kapoor S, Pandey G K. Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice. PLoS One, 2013, 8: e62494



[9]Kocourkova D, Krckova Z, Pejchar P, Veselkova S, Valentova O, Wimalasekera R, Scherer G F, Martinec J. The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J Exp Bot, 2011, 62: 3753–3763



[10]Wimalasekera R, Pejchar P, Holk A, Martinec J, Scherer G F. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. Mol Plant, 2010, 3: 610–625



[11]Peters C, Kim S C, Devaiah S, Li M, Wang X. Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant Cell Environ, 2014, 37: 2002–2013



[12]Gaude N, Nakamura Y, Scheible W R, Ohta H, Dormann P. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J, 2008, 56: 28–39



[13]Doust A N, Kellogg E A, Devos K M, Bennetzen J L. Foxtail millet: a sequence-driven grass model system. Plant Physiol, 2009, 149: 137–141



[14]Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye C Y, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant Setaria. Nat Biotechnol, 2012, 30: 555–561



[15]Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012, 30: 549–554



[16]霍冬英, 郑炜君, 李盼松, 徐兆师, 周永斌, 陈明, 马有志, 闵东红, 张小红. 谷子F-box家族基因的鉴定、分类及干旱响应. 作物学报, 2014, 40: 1585–1594



Huo D Y, Zheng W J, Li P S, Xu Z S, Zhou Y B, Chen M, Ma Y Z, Min D H, Zhang X H. Identification, classification, and drought response of F-box gene family in foxtail millet. Acta Agron Sin, 2014, 40: 1585–1594 (in Chinese with English abstract)



[17]闵东红, 薛飞洋, 马亚男, 陈明, 徐兆师, 李连城, 刁现民, 贾冠清, 马有志. 谷子PP2C基因家族的特性. 作物学报, 2013, 39: 2135–2144



Min D H, Xue F Y, Ma Y N, Chen M, Xu Z S, Li L C, Diao X M, Jia G Q, Ma Y Z. Characteristics of PP2C gene family in foxtail millet (Setaria italica). Acta Agron Sin, 2013, 39: 2135–2144(in Chinese with English abstract)



[18]Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007, 2: 1565–1572



[19]Clough S J, F. Bent A. Floral dip_ a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743



[20]Hartog M, Verhoef N, Munnik T. Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells1. Plant Physiol, 2003, 132: 311–317



[21]Zonia L, MunnikT. Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes1. Plant Physiol, 2004, 134: 813–823



[22]Pokotylo I, Pejchar P, Potocky M, Kocourkova D, Krckova Z, Ruelland E, Kravets V, Martinec J. The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog Lipid Res, 2013, 52: 62–79



[23]Nemhauser J L, Mockler T C, Chory J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol, 2004, 2: e258



[24]Mussig C, Shin G H, AltmannT. Brassinosteroids promote root growth in Arabidopsis. Plant Physiol, 2003, 133: 1261–1271



[25]Bao F, Shen J J, Brady S R, Muday G K, Asami T, Yang Z B. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol, 2004, 134: 1624–1631



[26]Belkhadir Y, Chory J. Brassinosteroid signaling: A paradigm for steroid hormone signaling from the cell surface. Science, 2006, 314: 1410–1411



[27]Nakamura A, higuchi K, Goda H, Fujiwara M T, Sawa S, Koshiba T, Shimada Y, Yoshida S. Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a crosstalk point of brassinosteroid and auxin signaling. Plant Physiol, 2003, 133: 1843–1853

[1] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[2] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[3] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[4] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[5] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[6] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[7] 李文兰, 李文才, 孙琦, 于彦丽, 赵勐, 鲁守平, 李艳娇, 孟昭东. 玉米生长素响应因子家族基因的表达模式分析[J]. 作物学报, 2021, 47(6): 1138-1148.
[8] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089.
[9] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[10] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[11] 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24-2基因在盐胁迫应答中的功能研究[J]. 作物学报, 2020, 46(9): 1351-1358.
[12] 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062.
[13] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[14] 韩乐,杜萍萍,肖凯. 小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究[J]. 作物学报, 2020, 46(6): 809-818.
[15] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!