作物学报 ›› 2015, Vol. 41 ›› Issue (07): 1017-1026.doi: 10.3724/SP.J.1006.2015.01017
胡利芹1,薛飞洋1,2,李微微1,3,王二辉1,2,徐兆师1,李连城1,周永斌1,2,贾冠清1,刁现民1,马有志1,陈明1,*
HU Li-Qin1,XUE Fei-Yang1,2,LI Wei-Wei1,3,WANG Er-Hui1,2,XU Zhao-Shi1,LI Lian-Cheng1,ZHOU Yong-Bin1,2,JIA Guan-Qing1,DIAO Xian-Min1,MA You-Zhi1,CHEN Ming1,*
摘要:
非特异性磷脂酶C(NPC,nonspecific phospholipase C)水解磷脂酰胆碱或磷脂酰乙醇胺产生第二信使二酰甘油(DAG), NPC类基因在植物处于干旱、高盐、低磷等非生物胁迫条件下时发挥重要的作用,并参与脱落酸(ABA)、油菜素内酯(BL)等激素信号传导途径。本研究以谷子品种龙谷25为试验材料,通过序列比对,克隆到一个新的NPC类基因,命名为SiNPC4。该基因被定位在谷子第8条染色体上,编码区全长2877 bp,由3个外显子和2个内含子组成,编码512个氨基酸,蛋白分子量为56.77 kD。系统进化树分析表明该基因位于NPC基因家族第3亚族,保守结构域分析表明该蛋白含有保守的磷脂酶结构域和4个基序。亚细胞定位结果显示,SiNPC4蛋白被定位在细胞质、细胞膜、细胞核中。基因表达谱分析结果表明,该基因主要在谷子根部表达,并受干旱、盐、低温、黑暗、ABA、BL、赤霉素(GA)和茉莉酸甲酯(MeJA)等的诱导表达。将SiNPC4基因转入拟南芥中,转基因拟南芥与野生型拟南芥相比对ABA和BL激素的敏感性降低,推测该基因可能作为负调控因子参与植物对ABA和BL激素的响应过程。在干旱和高盐处理下,过表达植株与野生型植株长势没有明显差异。
[1]Wang X M. Plant phospholipases. Plant Mol Biol, 2001, 52: 211–31[2]Li M, Hong Y, Wang X. Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim Biophys Acta, 2009, 1791: 927–935[3]Xue H W, Chen X, Mei Y. Function and regulation of phospholipid signalling in plants. Biochem J, 2009, 421: 145–156[4]Munnik T, Vermeer J E M. Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ, 2010, 33: 655–669[5]Kenji Y, Toshiaki M, Toshiyuki T. Purification and characterization of membrane-bound inositol phospholipid-specific phospholipase C. Plant Physiol, 1993, 102: 165–172[6]Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K i, Ohta H. A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem, 2004, 280: 7469–7476[7]Peters C, Li M, Narasimhan R, Roth M, Welti R, Wang X. Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell, 2010, 22: 2642–2659[8]Singh A, Kanwar P, Pandey A, Tyagi A K, Sopory S K, Kapoor S, Pandey G K. Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice. PLoS One, 2013, 8: e62494[9]Kocourkova D, Krckova Z, Pejchar P, Veselkova S, Valentova O, Wimalasekera R, Scherer G F, Martinec J. The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J Exp Bot, 2011, 62: 3753–3763[10]Wimalasekera R, Pejchar P, Holk A, Martinec J, Scherer G F. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. Mol Plant, 2010, 3: 610–625[11]Peters C, Kim S C, Devaiah S, Li M, Wang X. Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant Cell Environ, 2014, 37: 2002–2013[12]Gaude N, Nakamura Y, Scheible W R, Ohta H, Dormann P. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J, 2008, 56: 28–39[13]Doust A N, Kellogg E A, Devos K M, Bennetzen J L. Foxtail millet: a sequence-driven grass model system. Plant Physiol, 2009, 149: 137–141[14]Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye C Y, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant Setaria. Nat Biotechnol, 2012, 30: 555–561[15]Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012, 30: 549–554[16]霍冬英, 郑炜君, 李盼松, 徐兆师, 周永斌, 陈明, 马有志, 闵东红, 张小红. 谷子F-box家族基因的鉴定、分类及干旱响应. 作物学报, 2014, 40: 1585–1594Huo D Y, Zheng W J, Li P S, Xu Z S, Zhou Y B, Chen M, Ma Y Z, Min D H, Zhang X H. Identification, classification, and drought response of F-box gene family in foxtail millet. Acta Agron Sin, 2014, 40: 1585–1594 (in Chinese with English abstract)[17]闵东红, 薛飞洋, 马亚男, 陈明, 徐兆师, 李连城, 刁现民, 贾冠清, 马有志. 谷子PP2C基因家族的特性. 作物学报, 2013, 39: 2135–2144Min D H, Xue F Y, Ma Y N, Chen M, Xu Z S, Li L C, Diao X M, Jia G Q, Ma Y Z. Characteristics of PP2C gene family in foxtail millet (Setaria italica). Acta Agron Sin, 2013, 39: 2135–2144(in Chinese with English abstract)[18]Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007, 2: 1565–1572[19]Clough S J, F. Bent A. Floral dip_ a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743[20]Hartog M, Verhoef N, Munnik T. Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells1. Plant Physiol, 2003, 132: 311–317[21]Zonia L, MunnikT. Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes1. Plant Physiol, 2004, 134: 813–823[22]Pokotylo I, Pejchar P, Potocky M, Kocourkova D, Krckova Z, Ruelland E, Kravets V, Martinec J. The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog Lipid Res, 2013, 52: 62–79[23]Nemhauser J L, Mockler T C, Chory J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol, 2004, 2: e258[24]Mussig C, Shin G H, AltmannT. Brassinosteroids promote root growth in Arabidopsis. Plant Physiol, 2003, 133: 1261–1271[25]Bao F, Shen J J, Brady S R, Muday G K, Asami T, Yang Z B. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol, 2004, 134: 1624–1631[26]Belkhadir Y, Chory J. Brassinosteroid signaling: A paradigm for steroid hormone signaling from the cell surface. Science, 2006, 314: 1410–1411[27]Nakamura A, higuchi K, Goda H, Fujiwara M T, Sawa S, Koshiba T, Shimada Y, Yoshida S. Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a crosstalk point of brassinosteroid and auxin signaling. Plant Physiol, 2003, 133: 1843–1853 |
[1] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[2] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[3] | 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885. |
[4] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[5] | 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279. |
[6] | 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264. |
[7] | 李文兰, 李文才, 孙琦, 于彦丽, 赵勐, 鲁守平, 李艳娇, 孟昭东. 玉米生长素响应因子家族基因的表达模式分析[J]. 作物学报, 2021, 47(6): 1138-1148. |
[8] | 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089. |
[9] | 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846. |
[10] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[11] | 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24-2基因在盐胁迫应答中的功能研究[J]. 作物学报, 2020, 46(9): 1351-1358. |
[12] | 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062. |
[13] | 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127. |
[14] | 韩乐,杜萍萍,肖凯. 小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究[J]. 作物学报, 2020, 46(6): 809-818. |
[15] | 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711. |
|