欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (09): 1313-1323.doi: 10.3724/SP.J.1006.2015.01313

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

栽培种花生荚果大小相关性状QTL定位

李振动, 李新平, 黄莉, 任小平, 陈玉宁, 周小静, 廖伯寿, 姜慧芳*   

  1. 中国农业科学院油料作物研究所 / 农业部油料作物生物学与遗传育种重点实验室, 湖北武汉430062
  • 收稿日期:2015-01-15 出版日期:2015-09-12 网络出版日期:2015-09-12
  • 通讯作者: 姜慧芳, E-mail:peanut@oilcrops.com, Tel: 027-86711550
  • 作者简介:第一作者联系方式: E-mail:kongshan08@163.com, Tel: 13720351933
  • 基金资助:
    本研究由国家自然科学基金项目(31271764, 31371662, 31471534), 国家重点基础研究发展计划(973计划)项目(2011CB109300), 农业部农作物种质资源保护项目(NB2010-2130135-28B), 国家现代农业产业技术体系建设专项(CARS-14-花生种质资源评价)和山东省农业良种工程项目资助

Mapping of QTLs for Pod Size Related Traits in Cultivated Peanut (Arachis hypogaea L.)

LI Zhen-Dong, LI Xin-Ping, HUANG Li, REN Xiao-Ping, CHENG Yu-Ning, ZHOU Xiao-Jing, LIAO Bo-Shou, JIANG Hui-Fang*   

  1. Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
  • Received:2015-01-15 Published:2015-09-12 Published online:2015-09-12

摘要: 以远杂9102为母本, 徐州68-4为父本杂交衍生的F5和F6共188个家系, 构建了一张包含365个标记, 总长度713.07 cM, 标记间平均距离1.96 cM的栽培种花生遗传图谱。图谱包含22个连锁群, 各连锁群平均长度12.37~ 81.39 cM, 连锁群上标记数量3~46个。结合2013和2014年采集的荚果表型数据, 采用WinQTLcart 2.5软件的复合区间作图法(composite interval mapping, CIM)进行QTL定位和效应估计。2个环境下共检测到41个QTL, 其中与荚果长、宽、厚和百果重相关的QTL分别为13、7、13和8个, 表型变异解释率为3.14%~18.27%。有6个QTL在2种环境下被重复检测到, 其中百果重相关的2个(qHPWLG13.1qHPWLG14.1), 分布在LG13和LG14连锁群, 遗传贡献率为6.95%~14.60%; 与荚果长相关的3个(qLPLG2.2qLPLG13.1qLPLG14.1), 分布在LG2、LG13和LG14连锁群, 遗传贡献率为3.14%~18.27%; 与荚果厚相关的1个(qTPLG3.4), 分布在LG3连锁群, 遗传贡献率为8.24%~9.24%。本研究涉及性状存在9个QTL热点区, 每个热点区涉及2~3个性状, 表型贡献率为3.57%~18.27%。

关键词: 栽培种花生, 遗传图谱, 荚果大小, QTL

Abstract: One hundred and eighty-eight recombinant inbred lines (RIL), derived from a cross between two Spanish type peanut cultivars (Yuanza 9102 × Xuzhou 68-4), were used as mapping population. Finally, a genetic linkage map consisting of 443 SSR loci in 22 linkage groups and covering 713.07 cM with an average distance of 1.96 cM was constructed. The length of linkage group was from 12.37 cM to 81.39 cM and the number of markers was 3-46. QTL mapping of the traits related to pod was conducted by using CIM model in WinQTLcart 2.5. A total of 41 QTLs were detected in the two environments, including thirteen for pod length, seven for pod width, thirteen for pod thickness and right for hundred pod weight, every single QTL explained 3.14%-18.27% of the phenotypic variation. A total of six QTLs were detected in both environments, including three for pod length with explained phenotypic variance of 3.14%-18.27% on the linkage group 2, linkage group 13 and linkage group 14. One for pod thickness with explained phenotypic variance of 8.24%-9.24% on the linkage group 3, and two for hundred pod weight with explained phenotypic variance of 6.95%-14.60% on the linkage group 13 and linkage group 14. The result showed that there were nine hotsports for QTL research, and each of them was associated with 2-3 traits, explaining 3.57%-18.27% of the phenotypic variation.

Key words: Cultivated peanut, Genetic mapping, Pod size, QTL

[1] 廖伯寿. 我国花生科研与产业发展现状及对策. 中国农业信息, 2008, (5): 18-20 Liao B S. Development status and strategies of peanut research and industry development status. China Agric Inform , 2008, (5): 18-20 (in Chinese with English abstract)
[2] 洪彦彬, 梁炫强, 陈小平, 刘海燕, 周桂元, 李少雄, 温世杰. 花生栽培种SSR遗传图谱的构建. 作物学报, 2009, 35: 395-402 Hong Y B, Liang X Q, Chen X P, Liu H Y, Zhou G Y, Li S X, Wen S J, Construction of genetic linkage map in peanut ( Arachis hypogaea L.) cultivars . Acta Agron Sin , 2009, 35: 395-402 (in Chinese with English abstract)
[3] Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, NaitoY, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S. in silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol , 2012, 12: 80
[4] Selvaraj M G, Narayana M, Schubert A M, Ayers J L, Baring M R, Burow M D. Identification of QTLs for pod and kernel traits in cultivated peanut by bulket segrant analysis. Electr J Biotechnol , 2009, 12: 1-13
[5] 师家勤. 甘蓝型油菜产量性状及其杂种优势遗传基础的全基因组解析. 华中农业大学博士学位论文, 湖北武汉, 2009 Shi J Q. Genome-wide Dissection of Genetic Basis of Yield Traits and Heterosis in Brassica napus . PhD Dissertation of Huazhong Agricultural University, Wuhan, China, 2009 (in Chinese with English abstract)
[6] 张新友. 栽培花生产量、品质和抗病性的遗传分析与QTL定位研究. 浙江大学博士学位论文, 浙江杭州, 2011 Zhang X Y. Inheritance of Main Traits Related to Yield, Quantity and Disease Resistance and Their QTLs Mapping in Peanut ( Arachis hypogaea L.). PhD Dissertation of Zhejiang University, Hangzhou, China, 2011 (in Chinese with English abstract)
[7] 刘华. 栽培花生产量和品质相关性状遗传分析与QTL定位研究. 河南农业大学硕士学位论文, 河南郑州, 2011 Liu H. Inheritance of Main Traits Related to Yield and Quality, and Their QTL Mapping in Peanut ( Arachis hypogaea L.). MS Thesis of Henan Agricultural University, Zhengzhou, China, 2011 (in Chinese with English abstract)
[8] 禹山林. 中国花生品种及其系谱. 上海: 上海科学与技术出版社, 2008 Yu S L. Peanut Varieties and Pedigree in China. Shanghai Scientific and Technical Publishers, 2008 (in Chinese with English abstract)
[9] 熊文献, 袁建中, 余辉, 喻春强, 熊瑞芳. 高产优质花生新品种远杂9102特征特性及保优节本配套栽培技术. 花生学报, 2003, 32: 500-503 Xiong W X, Yuan J Z, Yu H, Yu C Q, Xiong R F. New cultivation techniques for new variety peanut Yuanza 9102. J Peanut Sci , 2003, 32: 500-503 (in Chinese with English abstract)
[10] Naito Y, Suzuki S, Iwata Y, Kuboyama T. Genetics diversity and relationship analysis of peanut germplasm using SSR markers. Breed Sci , 2008, 58: 293-300
[11] Nagy E, Chu Y, Guo Y F, Khananl S, Tang S S, Li Y, Dong W B, Timer P, Taylor C, Ozias-Akins P, Holbrook C C, Beilinson V, Nielsen N C, Stalker H T, Knapp S J. Recombination is suppressed in an alien introgression in peanut harbouring Rma, a dominant root-knot nematode resistance gene. Mol Breed , 2010, 26: 357-370
[12] Moretzsohn M C, Hopkins M S, Mitchell S E, Kresovich S, Valls J F M, Ferreira M F. Genetic diversity of peanut ( Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol , 2004, 4: 11
[13] Pandey M K, Gautami B, Jayakumar T, Sriswathi M, Upadhyaya H D, Gowda M V C, Radhakrishan T, Bertioli D J, Knapp S J, Cook D R, Knapp S J, Cook D R, Varshney R K. Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut ( Arachis hypogaea ). Plant Breed , 2012, 131: 139-147
[14] Zhao Y, Prakash C S, He G. Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public datebase. BMC Res Notes , 2012, 5: 362
[15] Moretzsohn M C, Leoi L, Proite K, Guimaras P M, Leal-Bertioli S C M, Gimenes M A, Martins W S, Valls J F M, Grattapaglia D, Bertioli D J. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis ( Fabaceae ). Theor Appl Genet , 2005, 111: 1060-1071
[16] Palmieri D A, Bechara M D, Curi R A, Gimenes M A, Lopes C R. Novel polymorphic microsatellite markers in section Caulorrhizae ( Arachis , Fabaceae ). Mol Ecol Notes , 2005, 5: 77-79
[17] Palmieri D A, Hoshino A A, Bravo J P, Lopes C R, Gimenes M A. Isolation and characterization of microsatellite loci from the forage species Arachis pintoi (Genus, Arachis). Mol Ecol Notes , 2002, 2: 551-553
[18] Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut ( A. hypogaea L . ). Theor Appl Genet , 2004, 108: 1064-1070
[19] He G H, Meng R H, Newman M, Cao G Q, Pittman R N, Prakash C S. Microsatellites as DNA markers in cultivated peanut ( Arachis hypogaea L . ). BMC Plant Biol , 2003, 3: 3
[20] Luo M, Dang P, Guo B Z, He G, Holbrook C C, Bausher M G, Lee K D. Generation of expressed sequence tag (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci , 2005, 45: 346-353
[21] Mace E S, Varshney R K, Mahalakshmi V, Seetha K, Gafoor A, Leeladevi Y, Crouch J H. In silico development of simple sequence repeat markers within the aeschynomenoid/dalbergoid and genistoid clades of the Leguminosae family and their transferability to Arachis hypogaea , groundnut. Plant Sci , 2007, 174: 51-60
[22] Proite K, Leal-Bertioli S C, Bertioli D J, Moretzsohn M C, Da Silva F R, Martins N F, Guimaraes P M. ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol , 2007, 7: 7
[23] Gimenes M A, Hosino A A, Barbosa A A G, Palmieri D A, Lopes C R. Characterization and transferability of microsatellite markers of cultivated peanut ( Arachis hypogaea L . ). BMC Plant Biol , 2007, 7: 9
[24] Wang C T, Yang X D, Chen D Y, Yu L S, Liu G Z, Tang Y Y, Xu J Z. Isolation of simple sequence repeats from groundnut. Electr J Biotech , 2007, 10: 473-480
[25] Cuc L M, Mace E S, Grouch J H, Quang V D, Long T D, Varshney R K. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut ( Arachis hypogaea L . ). BMC Plant Biol , 2008, 8: 55
[26] Guo B Z, Chen X P, Hong Y B, Liang X Q, Dang P, Brenneman T, Holbrook C, Culbreath A. Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Intl J Plant Genom , 2009, doi:10.1155/2009/715605
[27] Gautami B, Ravi K, M L, Narasu M L, Hoisington D A, Varshney R K. Novel set of groundnut SSR markers for germplasm analysis and inter-specific transferability. Int J Integr Biol , 2009, 7: 100-106
[28] Van Ooijen J W, Voorips R E. JoinMap Version 3. 0: Software for the Calculation of Genetic Linkage Maps. Wageningen, The Netherlands Plant Research International, 2001
[29] Li Z L, Wilson R F, Rayford W E, Boerma H R. Molecular mapping genes condition in reduced palmitic acid content in N87-2122-4 soybean. Crop Sci , 2002, 42: 373-378
[30] Zeng Z B. Precision mapping of quantitative trait loci. Genetics , 1994, 136: 1457-1468
[31] Qin H D, Feng S P, Chen C, Guo Y F, Knapp S, Culbreath A, He G H, Wang M L, Zhang X Y, Horlbrook C C, Ozias-Akins P, Guo B Z. An integrated genetic linkage map of cultivated peanut ( Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet , 2012, 124: 653-664
[32] Wang H, Penmetsa R V, Yuan M, Gong L, Zhao Y, Guo B, Farmer A D, Rosen B D, Gao J, Isobe S, Bertioli D J, Varshney R K, Cook D R, He G. Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut ( Arachis hypogaea L . ). BMC Plant Biol , 2012, 12: 10
[33] Shirasawa K, Bertioli D J, Varshney R K, Moretzsohn M C, Leal-Bertiol S C, Thudi M, Pandey M K, Rami J F, Foncéka D, Gowda M V C, Qin H D, Guo B Z, Hong Y B, Liang X Q, Hirakawa H, Tabata S, Isobe S. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res , 2013, 20: 173-184
[34] 蓝新隆, 唐兆秀, 徐日荣. 福建花生产量与主要农艺性状之间的灰色关联度分析. 江西农业学报, 2011, 23(8): 61-63 Lan X L, Tang Z X, Xu R R. Analysis of gray correlation between yield and major agronomic traits of peanut in Fujian province. Acta Agric Jiangxi , 2011, 23(8): 61-63 (in Chinese with English abstract)
[35] 郑国栋, 黄金堂, 陈海玲. 花生产量与主要农艺性状之间的灰色关联度分析. 安徽农业科学, 2013, 19(16): 22-24 Zheng G D, Huang J T, Chen H L. Analysis of gray correlation between yield and major agronomic traits of peanut. Anhui Agri Sci Bull , 2013, 19(16): 22-24 (in Chinese with English abstract)
[36] 江建华, 倪皖莉, 于欢欢, 管叔琪, 肖美华. 花生单株生产力与主要农艺性状间的相关性研究. 中国农学通报, 2013, 29(36): 125-130 Jiang J H, Ni W L, Yu H H, Guan S Q, Xiao M H. The correlation analysis between productivity per plant and major agronomic traits of peanut. Chin Agric Sci Bull , 2013, 29(36): 125-130 (in Chinese with English abstract)
[37] 李兰周, 刘风珍, 万勇善, 张昆, 赵文祥. 花生荚果和籽仁相关性状的主基因+多基因混合遗传模型分析. 华北农学报, 2013, 28(5): 116-123 Li L Z, Liu F Z, Wan Y S, Zhang K, Zhao W X. Genetic analysis of pod and kernel characters by major gene plus polygene mixed inheritance model in peanut. Acta Agric Boreali-Sin , 2013, 28(5): 116-123 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[4] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[5] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[6] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[7] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[8] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[9] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[10] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[11] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347.
[12] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[13] 孟鑫浩, 张靖男, 崔顺立, Charles Y.Chen, 穆国俊, 侯名语, 杨鑫雷, 刘立峰. 花生荚果与种子相关性状QTL定位及与环境互作分析[J]. 作物学报, 2021, 47(10): 1874-1890.
[14] 李竟才, 王强林, 宋威武, 黄维, 肖桂林, 吴承金, 顾钦, 宋波涛. 基于侯选基因标记的四倍体马铃薯休眠QTL关联分析[J]. 作物学报, 2020, 46(9): 1380-1387.
[15] 姜树坤,王立志,杨贤莉,李波,母伟杰,董世晨,车韦才,李忠杰,迟力勇,李明贤,张喜娟,姜辉,李锐,赵茜,李文华. 基于高密度SNP遗传图谱的粳稻芽期耐低温QTL鉴定[J]. 作物学报, 2020, 46(8): 1174-1184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!