欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (04): 532-539.doi: 10.3724/SP.J.1006.2016.00532

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

羽衣甘蓝自交不亲和与自交亲和系种子萌发期DNA甲基化的动态变化

张旸1,胡中影1,赵月明1,李娜2,解莉楠1*   

  1. 1东北林业大学生命科学学院,黑龙江哈尔滨 150040; 2黑龙江生物科技职业学院,黑龙江哈尔滨 150025
  • 收稿日期:2015-07-21 修回日期:2015-11-20 出版日期:2016-04-12 网络出版日期:2015-12-18
  • 通讯作者: 解莉楠, E-mail: linanxie@126.com
  • 基金资助:

    本研究由中央高校基本科研业务费专项资金项目(DL09AB13)和哈尔滨市科技创新人才研究专项资金项目(青年科技创新人才)(2013RFQXJ036)资助。

DNA Methylation Dynamic Analysis of Self Compatible Line and Self-Incompatible Line of Brassica oleracea var. acephala at Seed Germination Stage

ZHANG Yang1,HU Zhong-Ying1,ZHAO Yue-Ming1,LI Na2,XIE Li-Nan1,*   

  1. 1 College of Life Sciences, Northeast Forestry University, Harbin 150040, China; 2 Heilongjiang Vocational College of Biology and Technology, Harbin 150025, China
  • Received:2015-07-21 Revised:2015-11-20 Published:2016-04-12 Published online:2015-12-18
  • Contact: 解莉楠, E-mail: linanxie@126.com
  • Supported by:

    This study weresupported by the Basic Scientific Research Expensesof the Higher Education Institutions of Central Government, China(DL09AB13) and the Subject of Innovative Talents for Science and Technology research in Harbin(Youth talents in science and technology innovation) (2013RFQXJ036).

摘要:

自交不亲和系植株的种子往往出现退化现象,为了研究种子的退化现象是否与甲基化相关,因此本文采用甲基化敏感扩增多态性(methylation sensitive amplification polymorphism, MSAP)技术,以羽衣甘蓝自交不亲和系9#种子、自交亲和系14#种子为研究对象,对其生长发育过程种子基因组DNA甲基化水平变化情况进行研究。采用改良的CTAB法提取种子萌发不同时期DNA,然后通过MSAP分析、统计扩增条带,比较二者之间的差异。对9#种子DNA甲基化状态分析表明,萌发前期(0~2 d)发生甲基化位点数目持续增多,但萌发后期(2~8 d)发生去甲基化的数目大量增加,整个萌发期去甲基化位点数目是甲基化位点数目的11倍,说明9#种子萌发过程中DNA甲基化修饰是基因表达的重要调控方式之一;在相同发育时期,9#在总甲基化、全甲基化、半甲基化水平上均不同程度高于14#。随着种子的萌发,9#全甲基化水平明显上升,半甲基化水平几乎不变,而14#变化趋势与9#相反,半甲基化水平明显上升,全甲基化水平几乎不变.

关键词: 羽衣甘蓝, 自交不亲和性, 自交亲和性, DNA甲基化

Abstract:

The seed of self-incompatible line often degraded. This studyaims to clarify the relationship between the degradation of the seeds and methylation. In this experiment, methylation sensitive amplification polymorphism (MSAP) was used to study the status and patterns of the DNA methylation at different periods in seed germination of self-incompatible line 9# and self-compatible line 14#.The improved CTAB method is adopted to extract seed germination in different periods of DNA, and then through the MSAP analysis, statistical amplification bands, compare the differences between 9# and 14#. The results are shown as follows: DNA methylation modification throughout the whole process of seed germination of 9#, at the early stage of the germination (0 to 2 days) methylation sites continued to increase; at the later stage (2 to 8 days) demethylation increased apparently, and eventually the number of demethylation was 11 times more than methylation. It was proved that DNA methylation modification was an important way to regulate the gene expression during seed germination of self-incompatible line 9#. Self-incompatible line 9# and self-compatible line 14# had different DNA methylation status clearly at the respectively periods of 0 and 2 days after seed germination.The proportion of total methylation, full-methylation and semi-methylation of 9# was all higher than of 14# at the same period. As seedings continued to grow after germination, in 9#, the proportion of full-methylation increased clearly and almost that of semi-methylation did not change, while in 14#, the proportion of semi-methylation increased clearly and almost that of full-methylation did not change.

Key words: Brassica oleracea var. acephala, Self-incompatibility, Self-compatibility, DNA methylation

[1] 黄凌晖. 不同品种羽衣甘蓝观赏性状, 硫苷含量及抗虫性状研究. 浙江农林大学硕士学位论文, 浙江杭州, 2012.

Huang L H. Ornamental Traits, Glucosinolates Content and Insect-Resistant Traits Research of Brassica oleracea var. acephala D.C. in Different Varieties. MS Thesis of Zhejiang A&F University, Hangzhou, China, 2012

[2] 赵秀枢, 李名扬, 张文玲, 刘凡. 观赏羽衣甘蓝高频再生体系的建立. 基因组学与应用生物学, 2009, 28(1): 141–148

Zhao X S, Li M Y, Zhang W L Liu F. The establishment of  high-frequency regeneration system in Brassica oleracea var. acephala D.C. Genom Appl Biol, 2009, 28(1): 141–148

[3] 李惠芬, 钱芝龙. 羽衣甘蓝创新种质形态学特征研究. 北方园艺, 2005, (3): 56–58

Li H F, Qian Z L.The morphological features researches ofnew germplasm in Brassica oleracea var. acephala D.C. Northern Hort, 2005, (3): 56–58

[4] Zhang Y J, Zhao Z H, Xue Y B. Roles of Proteolysis in plant self-incompatibility. Annu Rev Cell Dev Biol, 2009, 60: 21–42

[5] 寇小培. 分子标记辅助选育甘蓝型油菜自交不亲和系. 华中农业大学硕士论文, 湖北武汉, 2012

Kou X P .Molecular Marker Assisted Breeding B. napus Rape of Selfing Incompatibility.MS Thesis of Huazhong Agricultural University, Wuhan, China, 2012

[6] 何余堂, 涂金星, 傅廷栋, 陈元宝. 芸薹属自交不亲和基因的分子生物学及进化模式. 植物学通报, 2004, 20: 513–521

He Y T, Tu J X, Fu T D, Chen Y B. Molecular biology and evolution mode of selfing incompatibility gene in Brassica. Chin Bull Bot, 2004, 20: 513–521

[7] 孟金陵, 刘定副, 罗鹏,. 植物生殖遗传学. 北京: 科学出版社, 1995

Meng J L, Liu D F, Luo P. Plant Reproductive Genetics. Beijing: Science Press, 1995

[8] 于晓敏. 羽衣甘蓝SRK和SCR的克隆表达及克服自交不亲和性的研究. 东北林业大学硕士学位论文, 黑龙江哈尔滨, 2007

Yu X M. Cloning and Overcome the Selfing Incompatibility the Research of SRK and SCR in Brassica oleracea var. acephala D.C. MS Thesis of Northeast Forestry University, Harbin, China, 2007.

[9] 薛勇彪, 崔海洋, 赖钊, 胡适宜. 不亲和性和自交不亲和性及其分子生物学基础: 被子植物受精生物学. 北京: 科学出版社, 2002. pp 128–148

Xue Y B, Cui H Y, Lai Z,Hu S Y. Molecular Biological Basis of Incompatibility and Self Incompatibility: Fertilization Biology of Angiosperms.Beijing: Science Press, 2002. pp 128–148

[10] 景欣. 羽衣甘蓝自交亲和系及自交不亲和系的基因组DNA甲基化水平差异分析. 东北林业大学硕士学位论文, 黑龙江哈尔滨, 2010

Jing X. Genomic DNA Methylation Level Variance Analysis of SC and SI in Brassica oleracea var. acephala D.C.MS Thesis of Northeast Forestry University, Harbin, China, 2010

[11] 王嘉为. 羽衣甘蓝自交不亲和性克服探讨. 现代园艺, 2015, 4: 4

Wang J W. Overcome selfing incompatibility of Brassica oleracea var. acephala D.C. Modern Hort, 2015, 4: 004

[12] Berger F, Chaudhury A. Parental memories shape seeds. Trends Plant Sci, 2009, 14: 550–556

[13] Grafstrom R H, Yuan R, Hamilton D L. The characteristics of DNA methytation in an in vitro DNA synthesizing system from mouse fibroblasts. Nucl Acids Res, 1985, 13: 2827–2842

[14] Martienssen R A, Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science, 2001, 293: 1070–1074

[15] 李娜, 张旸, 解莉楠, 李玉花. 植物DNA甲基化研究进展. 植物生理学报, 2012, 48: 1027–1036

Li N, Zhang Y, Xie L N, Li Y H. The research progress of plant DNA methylation. Plant Physiol Commun, 2012, 48: 1027–1036.

[16]Xiao W, Custard K D, Brown R C, Lemmon B E, Harada J J, Goldberg R B, Fischera R L. DNA methylation is critical for Arabidopsis embryogenesis and seed viability.Plant Cell, 2006, 18: 805–814

[17] Xiong L Z, Xu C G, Maroof M A S, Zhang Q. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol General Genet, 1999, 261: 439–446

[18] 杨金兰, 柳李旺, 龚义勤, 黄丹琼, 王峰, 何玲莉. 镉胁迫下萝卜基因组DNA甲基化敏感扩增多态性分析. 植物生理与分子生物学学报, 2007, 33: 219–226

Yang J L, Liu L W, Gong Y Q, Huang D Q, Wang F, He L L. Radish genomic DNA methylation sensitive amplification polymorphism analysis under Cadmium stresses. J Plant Physiol MolBiol, 2007, 33: 219–226

[19] Ikeda Y, Kinoshita T. DNA demethylation: a lesson from the garden. Chromosoma, 2009, 118: 37–41

[20] Zilberman D. The evolving functions of DNA methylation. Curr Opin Plant Biol, 2008, 11: 554–559

[21] Zheng X, Pontes O, Zhu J, Miki D, Zhang F, Li W X, Lida K, Kapoor A, Pikaard C S, Zhu J K. ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature, 2008, 455: 1259–1262

[22] Gehring M, Bubb K L, Henikoff S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science, 2009, 324: 1447–1451

[23] Xiao W, Custard K D, Brown R C, Lemmon B E, Harada J J, Goldberg R B, Fischer R L. DNA methylation is critical for Arabidopsis embryogcnesis and seed viability. Plant Cell, 2006, 18: 805–814

[24] 陆光远, 伍晓明, 陈碧云, 高桂珍, 许鲲, 李响枝. 油菜种子萌发过程中DNA甲基化的MSAP分析. 科学通报, 2005, 50: 2750–2756

Lu G Y, Wu X M, Chen B Y, Gao G Z, Xu K, Li X Z.MSAP analysis of DNA methylation in germination process of rape seed. Chin Sci Bull, 2005, 50: 2750–2756

[25] 乔幸. 大麦种子成熟和萌发过程DNA甲基化多样性分析. 四川农业大学硕士论文, 四川成都, 2011

Qiao X. Analyzing the Diversity of DNA methylation of Barley Seed in Maturation and Germination Processes.MS Thesis of SichuanAgricultural University, Chengdu, China, 2011

[26] Cervera M T, Ruiz-Garcia L, Martinez-Zapater J M. Analysis of DNA methylationin Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genom, 2002, 268: 543–552

[1] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[2] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[3] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[4] 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704.
[5] 李鹏程,毕真真,梁文君,孙超,张俊莲,白江平. DNA甲基化参与调控马铃薯干旱胁迫响应[J]. 作物学报, 2019, 45(10): 1595-1603.
[6] 周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*. 冷驯化不同阶段茶树DNA甲基化模式的变化[J]. 作物学报, 2015, 41(07): 1047-1055.
[7] 谭河林,许欣颖,付立曼,向小娥,李剑桥,郭昊伦,叶文雪. 甘蓝型油菜及其亲本物种甲基化酶I基因的克隆及表达模式[J]. 作物学报, 2015, 41(03): 405-413.
[8] 黄志熊,王飞娟,蒋晗,李志兰,丁艳菲,江琼,陶月良,朱诚. 两个水稻品种镉积累相关基因表达及其分子调控机制[J]. 作物学报, 2014, 40(04): 581-590.
[9] 吴绍华,张红宇,薛晶晶,徐培洲,吴先军. 双胚苗水稻来源的单倍体、二倍体及其杂交F1的DNA甲基化位点分析[J]. 作物学报, 2013, 39(01): 50-59.
[10] 高桂珍, 应菲, 陈碧云, 李浩, 吕晓丹, 闫贵欣, 许鲲, 伍晓明. 热胁迫过程中白菜型油菜种子DNA的甲基化[J]. 作物学报, 2011, 37(09): 1597-1604.
[11] 吴韦铷,朱利泉,李成琼,杨昆,唐章林,任雪松,王小佳. 甘蓝KAPP编码基因的克隆与序列分析[J]. 作物学报, 2010, 36(07): 1067-1074.
[12] 荣小营,朱利泉,王永,高启国,陈晓丹,杨洋,王小佳. 甘蓝自交不亲和基因MLPK与SSP的FISH定位[J]. 作物学报, 2009, 35(5): 802-808.
[13] 李雪林,林忠旭,聂以春,郭小平,张献龙. 盐胁迫下棉花基因组DNA表观遗传变化的MSAP分析[J]. 作物学报, 2009, 35(4): 588-596.
[14] 李春艳;张幸果;王同华;李媛媛;陈庆芳;傅廷栋;沈金雄;马朝芝. 甘蓝型油菜自交不亲和临保性及其连锁AFLP标记[J]. 作物学报, 2007, 33(09): 1452-1457.
[15] 仪治本;孙毅;牛天堂;梁小红;刘龙龙;赵威军;李炳林. 高粱基因组DNA胞嘧啶甲基化在杂交种和亲本间差异研究[J]. 作物学报, 2005, 31(09): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!