[1] 黄凌晖. 不同品种羽衣甘蓝观赏性状, 硫苷含量及抗虫性状研究. 浙江农林大学硕士学位论文, 浙江杭州, 2012.
Huang L H. Ornamental Traits, Glucosinolates Content and Insect-Resistant Traits Research of Brassica oleracea var. acephala D.C. in Different Varieties. MS Thesis of Zhejiang A&F University, Hangzhou, China, 2012
[2] 赵秀枢, 李名扬, 张文玲, 刘凡. 观赏羽衣甘蓝高频再生体系的建立. 基因组学与应用生物学, 2009, 28(1): 141–148
Zhao X S, Li M Y, Zhang W L Liu F. The establishment of high-frequency regeneration system in Brassica oleracea var. acephala D.C. Genom Appl Biol, 2009, 28(1): 141–148
[3] 李惠芬, 钱芝龙. 羽衣甘蓝创新种质形态学特征研究. 北方园艺, 2005, (3): 56–58
Li H F, Qian Z L.The morphological features researches ofnew germplasm in Brassica oleracea var. acephala D.C. Northern Hort, 2005, (3): 56–58
[4] Zhang Y J, Zhao Z H, Xue Y B. Roles of Proteolysis in plant self-incompatibility. Annu Rev Cell Dev Biol, 2009, 60: 21–42
[5] 寇小培. 分子标记辅助选育甘蓝型油菜自交不亲和系. 华中农业大学硕士论文, 湖北武汉, 2012
Kou X P .Molecular Marker Assisted Breeding B. napus Rape of Selfing Incompatibility.MS Thesis of Huazhong Agricultural University, Wuhan, China, 2012
[6] 何余堂, 涂金星, 傅廷栋, 陈元宝. 芸薹属自交不亲和基因的分子生物学及进化模式. 植物学通报, 2004, 20: 513–521
He Y T, Tu J X, Fu T D, Chen Y B. Molecular biology and evolution mode of selfing incompatibility gene in Brassica. Chin Bull Bot, 2004, 20: 513–521
[7] 孟金陵, 刘定副, 罗鹏,. 植物生殖遗传学. 北京: 科学出版社, 1995
Meng J L, Liu D F, Luo P. Plant Reproductive Genetics. Beijing: Science Press, 1995
[8] 于晓敏. 羽衣甘蓝SRK和SCR的克隆表达及克服自交不亲和性的研究. 东北林业大学硕士学位论文, 黑龙江哈尔滨, 2007
Yu X M. Cloning and Overcome the Selfing Incompatibility the Research of SRK and SCR in Brassica oleracea var. acephala D.C. MS Thesis of Northeast Forestry University, Harbin, China, 2007.
[9] 薛勇彪, 崔海洋, 赖钊, 胡适宜. 不亲和性和自交不亲和性及其分子生物学基础: 被子植物受精生物学. 北京: 科学出版社, 2002. pp 128–148
Xue Y B, Cui H Y, Lai Z,Hu S Y. Molecular Biological Basis of Incompatibility and Self Incompatibility: Fertilization Biology of Angiosperms.Beijing: Science Press, 2002. pp 128–148
[10] 景欣. 羽衣甘蓝自交亲和系及自交不亲和系的基因组DNA甲基化水平差异分析. 东北林业大学硕士学位论文, 黑龙江哈尔滨, 2010
Jing X. Genomic DNA Methylation Level Variance Analysis of SC and SI in Brassica oleracea var. acephala D.C.MS Thesis of Northeast Forestry University, Harbin, China, 2010
[11] 王嘉为. 羽衣甘蓝自交不亲和性克服探讨. 现代园艺, 2015, 4: 4
Wang J W. Overcome selfing incompatibility of Brassica oleracea var. acephala D.C. Modern Hort, 2015, 4: 004
[12] Berger F, Chaudhury A. Parental memories shape seeds. Trends Plant Sci, 2009, 14: 550–556
[13] Grafstrom R H, Yuan R, Hamilton D L. The characteristics of DNA methytation in an in vitro DNA synthesizing system from mouse fibroblasts. Nucl Acids Res, 1985, 13: 2827–2842
[14] Martienssen R A, Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science, 2001, 293: 1070–1074
[15] 李娜, 张旸, 解莉楠, 李玉花. 植物DNA甲基化研究进展. 植物生理学报, 2012, 48: 1027–1036
Li N, Zhang Y, Xie L N, Li Y H. The research progress of plant DNA methylation. Plant Physiol Commun, 2012, 48: 1027–1036.
[16]Xiao W, Custard K D, Brown R C, Lemmon B E, Harada J J, Goldberg R B, Fischera R L. DNA methylation is critical for Arabidopsis embryogenesis and seed viability.Plant Cell, 2006, 18: 805–814
[17] Xiong L Z, Xu C G, Maroof M A S, Zhang Q. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol General Genet, 1999, 261: 439–446
[18] 杨金兰, 柳李旺, 龚义勤, 黄丹琼, 王峰, 何玲莉. 镉胁迫下萝卜基因组DNA甲基化敏感扩增多态性分析. 植物生理与分子生物学学报, 2007, 33: 219–226
Yang J L, Liu L W, Gong Y Q, Huang D Q, Wang F, He L L. Radish genomic DNA methylation sensitive amplification polymorphism analysis under Cadmium stresses. J Plant Physiol MolBiol, 2007, 33: 219–226
[19] Ikeda Y, Kinoshita T. DNA demethylation: a lesson from the garden. Chromosoma, 2009, 118: 37–41
[20] Zilberman D. The evolving functions of DNA methylation. Curr Opin Plant Biol, 2008, 11: 554–559
[21] Zheng X, Pontes O, Zhu J, Miki D, Zhang F, Li W X, Lida K, Kapoor A, Pikaard C S, Zhu J K. ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature, 2008, 455: 1259–1262
[22] Gehring M, Bubb K L, Henikoff S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science, 2009, 324: 1447–1451
[23] Xiao W, Custard K D, Brown R C, Lemmon B E, Harada J J, Goldberg R B, Fischer R L. DNA methylation is critical for Arabidopsis embryogcnesis and seed viability. Plant Cell, 2006, 18: 805–814
[24] 陆光远, 伍晓明, 陈碧云, 高桂珍, 许鲲, 李响枝. 油菜种子萌发过程中DNA甲基化的MSAP分析. 科学通报, 2005, 50: 2750–2756
Lu G Y, Wu X M, Chen B Y, Gao G Z, Xu K, Li X Z.MSAP analysis of DNA methylation in germination process of rape seed. Chin Sci Bull, 2005, 50: 2750–2756
[25] 乔幸. 大麦种子成熟和萌发过程DNA甲基化多样性分析. 四川农业大学硕士论文, 四川成都, 2011
Qiao X. Analyzing the Diversity of DNA methylation of Barley Seed in Maturation and Germination Processes.MS Thesis of SichuanAgricultural University, Chengdu, China, 2011
[26] Cervera M T, Ruiz-Garcia L, Martinez-Zapater J M. Analysis of DNA methylationin Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genom, 2002, 268: 543–552 |