欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (05): 696-705.doi: 10.3724/SP.J.1006.2016.00696

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于蛋白质组学的高丹草苗期杂种优势分析

韩平安1,逯晓萍1,*,米福贵2,张瑞霞3,李美娜3,薛春雷1,董婧1,丛梦露1   

  1. 1内蒙古农业大学农学院, 内蒙古呼和浩特 010019;2内蒙古农业大学生态环境学院, 内蒙古呼和浩特 010019;3呼和浩特市种子管理站, 内蒙古呼和浩特 010020
  • 收稿日期:2015-09-07 修回日期:2016-01-11 出版日期:2016-05-12 网络出版日期:2016-02-18
  • 通讯作者: 逯晓萍, E-mail: lxpnmnd@126.com
  • 基金资助:

    本研究由国家自然科学基金项目(31160302,31460375)和呼和浩特市科技计划项目(2012-重计-8-2)资助。

Analysis of Heterosis in Sorghum-Sudangrass Hybrids Seedlings Based on Proteomics

HAN Ping-An1,LU Xiao-Ping1,*,MI Fu-Gui2,ZHANG Rui-Xia3,LI Mei-Na3,XUE Chun-Lei1,DONG Jing1,CONG Meng-Lu1   

  1. 1 College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, China;2 College of Ecology and Environmental Science, Inner Mongolia
    Agricultural University, Hohhot 010019, China; 3Hohhot Seed Management Station, Hohhot 010020, China
  • Received:2015-09-07 Revised:2016-01-11 Published:2016-05-12 Published online:2016-02-18
  • Contact: LU Xiaoping, E-mail: lxpnmnd@126.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China(31160302,31460375) and the Science and Technology Plan Projects of Hohhot (2012-major plans-8-2).

摘要:

高丹草是代表性的利用杂种优势的饲用牧草, 本研究以杂种高丹草及其亲本三叶期叶片为试材, 采用双向电泳、质谱技术及生物信息学分析方法, 进行了蛋白质组学研究。凝胶上检测到的可重复蛋白点400多个, 其中杂种与亲本间达到了显著水平的差异蛋白点34, 包括显性( 单亲沉默3个, 偏高亲表达17个, 偏低亲表达5个)和超显性表达( 特异表达1个, 超高亲表达6个, 超低亲表达2个)模式, 因此推测显性和超显性效应共同促进高丹草杂种优势的形成, 且显性效应作用更大。同时, 成功鉴定出其中的27个蛋白点涉及到8个功能类别, 即:光合作用、碳水化合物代谢、胁迫响应、ATP合成、蛋白质合成、电子转移、信号转导及未知蛋白。高丹草所占比例最大的光合蛋白多数呈上调表达, 表明杂种叶片光合作用增强进而同化更多的有机物是杂种优势形成的主要原因。网络互作的关键节点蛋白为杂种优势特异蛋白的基因操作提供了靶蛋白。本研究在蛋白质水平为高丹草杂种优势分析提供了理论依据, 也为其他饲草作物的相关研究提供了理论参考。

关键词: 高丹草, 叶片, 杂种优势, 蛋白质组

Abstract:

Sorghum-sudangrass hybrids are typically used for studying heterosis in forage crops. In this study, we carried out proteomic research on sorghum-sudangrass hybrids and their parents at the three-leaf stage by two dimensional electrophoresis-based proteomics and bioinformatic methods. More than 400 protein spots were detected, in which 34 proteins showed significant differences between hybrid and parents in expression, including dominant expression (showing three single-parent silent, seventeen high-parent and five low-parent expression) and overdominant expression (showing one hybrid-specific, six above-high-parent, two below-low-parent expression). Thus, we speculated that dominant and overdominant effects play key roles, and dominant effect is a major factor in the formation of heterosis in sorghum-sudangrass hybrid. Moreover, the 27 out of 34 proteins were related to eight functional categories, i.e., photosynthesis, carbohydrate metabolism, stress response, ATP synthesis, protein synthesis, electron transfer, signal transduction and unknown. The up-regulated photosynthetic proteins were the biggest category, which indicates that photosynthesis in the leaves of sorghum-sudangrass hybrid is enhanced resultig in producing more organic matter, so that showing heterosis. The identified key node proteins in the interaction networks were the potential target proteins for future genetic manipulation of the specific proteins of heterosis. Our findings provide a theoretical basis on heterosis analysis of sorghum-sudangrass hybrids, which is potentially useful for other forage plants.

Key words: Sorghum-sudangrass hybrids, Leaves, Heterosis, Proteomics

[1]韩平安, 逯晓萍, 王亚男, 米福贵, 张瑞霞, 董婧. 基于重组自交系群体的高丹草抗倒高产种质的筛选. 中国草地学报, 2014, 36(5): 51–57
Han P A, Lu X P, Wang Y N, Mi H G, Zhang R X, Dong J. Screening of the lodging-resistance and high-yielding germplasm of sorghum sudan grass hybrid based on recombinant inbred line populations. Chin J Grassland, 2014, 36(5): 51–57 (in Chinese with English abstract)
[2]Lu X P, Yun J F, Gao Cui P, Surya A. Quantitative trait loci analysis of economically important traits in Sorghum bicolor S. sudanense hybrid. Can J Plant Sci, 2011, 91: 81–90
[3]Bruce A B. The Mendelian theory of heredity and the augmentation of vigor. Science, 1910, 32: 627–628
[4]Davenport C. Degeneration, albinism and inbreeding. Science, 1908, 28: 454–456
[5]Crow J F. Alternative hypotheses of hybrid vigor. Genetics, 1948, 33: 477–487
[6]Hull F H. Recurrent selection for specific combining ability in corn. Agron J, 1945, 37: 134–145
[7]Powers L. An expansion of Jones’s theory for the explanation of heterosis. Am Nat, 1944, 78: 275–280
[8]Williams W. Heterosis and the genetics of complex characters. Nature, 1959, 184: 527–530
[9]Stupar R M, Springer N M. Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics, 2006, 173: 2199–2210
[10]Zhang L, Peng Y, Wei X, Dai Y, Yuan D, Lu Y, Pan Y, Zhu Z. Small RNAs as important regulators for the hybrid vigour of super-hybrid rice. J Exp Bot, 2014, 65: 5989–6002
[11]Wang H, Feng Q, Zhang M, Yang C, Sha W, Liu B. Alteration of DNA methylation level and pattern in sorghum (Sorghum bicolor L.) pure-lines and inter-line F1 hybrids following low-dose laser irradiation. J Photochem Photobiol B, 2010, 99(3): 150–153
[12]Gao M, Huang Q, Chu Y, Ding C, Zhang B, Su X. Analysis of the leaf methylomes of parents and their hybrids provides new insight into hybrid vigor in populus deltoides. BMC Genet, 2014, 15 (suppl-1): S8
[13]Song X, Ni Z, Yao Y, Xie C, Li Z, Wu H, Zhang Y, Sun Q. Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics, 2007, 7: 3538–3557
[14]Song X, Ni Z, Yao Y, Zhang Y, Sun Q. Identification of differentially expressed proteins between hybrid and parents in wheat (Triticum aestivum L.) seedling leaves. Theor Appl Genet, 2009, 118: 213–225
[15]Wang W, Meng B, Ge X, Song S, Yang Y, Yu X, Wang L, Hu S, Liu S, Yu J. Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines. Proteomics, 2008, 8(22): 480–4821
[16]进茜宁, 付志远, 丁冬, 刘宗华, 李卫华, 汤继华. 玉米杂交种先玉335 及其亲本种子萌发过程中胚芽蛋白质组学分析. 作物学报, 2011, 37(9): 1689−1694
Jin X N, Fu Z Y, Ding D, Liu Z H, Li W H, Tang J H. Proteomic analysis of plumule in seed germination for an elite hybrid pioneer 335 and its parental lines in maize. Acta agron sin, 2011, 37(9): 1689−1694 (in Chinese with English abstract)
[17]郭宝健, 隋志鹏, 李洋洋, 冯万军, 闫文文, 李慧敏, 孙其信, 倪中福. 玉米杂交种与亲本苗期叶片差异表达蛋白谱分析. 中国农业科学, 2013, 46(14): 3046−3054
Guo B J, Sui Z P, Li Y Y, Feng W J, Yan W W, Li H M, Sun Q X, Ni Z F. Differentially expressed protein profile of maize seedling leaves between hybrid and its parental lines. Sci agric sin, 2013, 14: 3046−3054 (in Chinese with English abstract)
[18]郭宝健, 宋方威, 冯万军, 隋志鹏, 孙其信, 倪中福. 玉米杂交种与亲本雌穗花器官形成期蛋白差异表达谱分析. 作物学报, 2013, 39: 845−854
Guo B J, Song F W, Feng W J, Sui Z P, Sun Q X, Ni Z F. Differentially expressed protein profiling during ear floral development between maize hybrid and its parents. Acta Agron Sin, 2013, 39: 845−854
[19]Ajit K S, Syed I A, Nabonita S, Renu S. Differential proteomic analysis of salt stress response in sorghum bicolor leaves. J Environmental and Experimental Botany, 2011, 71: 321–328
[20]Han B, Li C, Zhang L, Fang Y, Feng M, Li J. Novel royal jelly proteins identified by gel-based and gel-free proteomics. J Agric Food Chem, 2011, 59: 10346−10355
[21]Hoecker N, Lamkemeyer T, Sarholz B, Paschold A, Fladerer C, Madlung J, Wurster K, Stahl M, Piepho H P, Nordheim A, Hochholdinger F. Analysis of non additive protein accumulation in young primary roots of a maize (Zea mays L.) F1-hybrid compared to its parental inbred lines. Proteomics, 2008, 8: 3882–3894
[22]Zhang C, Yin Y, Zhang A, Lu Q, Wen X, Zhu Z, Zhang L, Lu C. Comparative proteomic study reveals dynamic proteome changes between superhybrid rice LYP9 and its parents at different developmental stages. J Plant Physiol, 2012, 16: 387–398
[23]Xia Y, Ning Z, Bai G, Li R, Yan G, Siddique K H, Baum M, Guo P. Allelic variations of a light harvesting chlorophyll a/b-binding protein gene (Lhcb1) associated with agronomic traits in barley. PLoS One, 2012, 7: e37573
[24]Green B R, Pichersky E, Kloppstech K. Chlorophyll a/b-binding proteins: an extended family. Trends Biochem Sci, 1999, 16: 181–186
[25]Hall M, Kieselbach T, Sauer U H, Schröder W P. Purification, crystallization and preliminary X-ray analysis of PPD6, a PsbP-domain protein from Arabidopsis thaliana. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2012, 68: 278–280
[26]Plaxton, W C. The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 185–214
[27]Sweetlove L J, Beard K F, Nunes-Nesi A, Fernie A R, Ratcliffe R G. Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci, 2010, 15: 462–70
[28]Bhushan D, Pandey A, Choudhary M K, Datta A, Chakraborty S, Chakraborty N. Comparative protemics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics, 2007, 6: 1868–1884
[29]George S, Venkataraman G, Parida A. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol, 2010, 167(4): 311–318
[30]Huang C, Guo T, Zheng S C, Feng Q L, Liang J H, Li L. Increased cold tolerance in Arabidopsis thaliana transformed with Choristoneura fumiferana glutathione S-transferase gene. Biol Plant, 2009, 53: 183–187
[31]Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner S, Tari I. Glutathione transferase supergene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem, 2014, 78: 15–26
[32]Kumar S, Asif M H, Chakrabarty D, Tripathia R D, Dubeyb R S, Trivedi P K. Expression of a rice Lambda class of glutathione S-transferase OsGSTL2, in arabidopsis provides tolerance to heavy metal and other abiotic stress. J Hazard Mater, 2013, 248–249: 228–237
[33]Moustaka J, Tanou G, Adamakis I D, Eleftheriou E P, Eleftheriou M M, Moustakas M. Leaf age-dependent photoprotective and antioxidative response mechanisms to paraquat-induced oxidative stress in Arabidopsis thaliana. Int J Mol Sci, 2015, 16: 13989–14006.
[34]McCarty R E. A plant biochemist's view of H+-ATPases and ATP syntheses. J Exp Bot, 1992, 172: 431–41
[35]von Ballmoos C, Dimroth P. Two distinct proton binding sites in the ATP synthase family. Biochemistry, 2007, 46: 11800–11809
[36]Taiz L, Zeiger E. Plant physiology. USA Sinauer, 2002, 145–50
[37]Zhang H, Luo M, Day R C, Talbot M J, Ivanova A, Ashton A R, Chaudhury A M, Macknight R C, Hrmova M, Koltunow A M.Developmentally regulated HEART STOPPER, a mitochondrially targeted L18 ribosomal protein gene, is required for cell division, differentiation, and seed development in Arabidopsis.J Exp Bot, 2015, erv296
 
[1] 牛丽, 白文波, 李霞, 段凤莹, 侯鹏, 赵如浪, 王永宏, 赵明, 李少昆, 宋吉青, 周文彬. 地膜覆盖对黄土高原地区两种种植密度下玉米叶片代谢组的影响[J]. 作物学报, 2021, 47(8): 1551-1562.
[2] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[3] 李金敏, 陈秀青, 杨琦, 史良胜. 基于高光谱的水稻叶片氮含量估计的深度森林模型研究[J]. 作物学报, 2021, 47(7): 1342-1350.
[4] 项洪涛, 李琬, 郑殿峰, 王诗雅, 何宁, 王曼力, 杨纯杰. 幼苗期淹水胁迫及喷施烯效唑对小豆生理和产量的影响[J]. 作物学报, 2021, 47(3): 494-506.
[5] 刘培勋,马小飞,万洪深,郑建敏,罗江陶,蒲宗君. 两个不同籽粒硬度小麦的比较蛋白组学分析[J]. 作物学报, 2020, 46(8): 1275-1282.
[6] 于宁宁,张吉旺,任佰朝,赵斌,刘鹏. 综合农艺管理对夏玉米叶片生长发育及内源激素含量的影响[J]. 作物学报, 2020, 46(6): 960-967.
[7] 韩康, 于静, 石晓华, 崔石新, 樊明寿. 不同光谱指数反演马铃薯叶片氮累积量的研究[J]. 作物学报, 2020, 46(12): 1979-1990.
[8] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[9] 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30.
[10] 王素芳,薛惠云,张志勇,汤菊香. 棉花根系生长与叶片衰老的协调性[J]. 作物学报, 2020, 46(01): 93-101.
[11] 向丽媛,徐凯,苏静,吴超,袁雄,郑兴飞,刁英,胡中立,李兰芝. 基于通路分析剖析水稻农艺性状配合力和杂种优势[J]. 作物学报, 2019, 45(9): 1319-1326.
[12] 李姚姚,范盼盼,明博,王春霞,王克如,侯鹏,谢瑞芝,李少昆. 基于高斯函数的春玉米叶片功能期模型构建与应用[J]. 作物学报, 2019, 45(8): 1221-1229.
[13] 田景山,张煦怡,张丽娜,徐守振,祁炳琴,随龙龙,张鹏鹏,杨延龙,张旺锋,勾玲. 新疆机采棉花实现叶片快速脱落需要的温度条件[J]. 作物学报, 2019, 45(4): 613-620.
[14] 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275.
[15] 宋奇琦,Pratiksha SINGH,Rajesh Kumar SINGH,宋修鹏,李海碧,农友业,杨丽涛,李杨瑞. 基于iTRAQ技术的甘蔗受黑穗病菌侵染蛋白组分析[J]. 作物学报, 2019, 45(1): 55-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!