欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (8): 1551-1562.doi: 10.3724/SP.J.1006.2021.03053

• 耕作栽培·生理生化 • 上一篇    下一篇

地膜覆盖对黄土高原地区两种种植密度下玉米叶片代谢组的影响

牛丽1,2,3(), 白文波1, 李霞2, 段凤莹2, 侯鹏2, 赵如浪4, 王永宏4, 赵明2, 李少昆2, 宋吉青1,*(), 周文彬2,*()   

  1. 1中国农业科学院农业环境与可持续发展研究所/农业农村部农膜残留污染防治重点实验室, 北京100081
    2中国农业科学院作物科学研究所, 北京100081
    3中国农业大学水利与土木工程学院, 北京100083
    4宁夏农林科学院农作物研究所, 宁夏永宁750105
  • 收稿日期:2020-09-11 接受日期:2020-12-01 出版日期:2021-08-12 网络出版日期:2021-01-04
  • 通讯作者: 宋吉青,周文彬
  • 作者简介:E-mail: niulipipi@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0300102)

Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities

NIU Li1,2,3(), BAI Wen-Bo1, LI Xia2, DUAN Feng-Ying2, HOU Peng2, ZHAO Ru-Lang4, WANG Yong-Hong4, ZHAO Ming2, LI Shao-Kun2, SONG Ji-Qing1,*(), ZHOU Wen-Bin2,*()   

  1. 1Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs/Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
    4Ningxia Academy of Agriculture and Forestry Sciences, Crops Research Institute, Yongning 750105, Ningxia, China
  • Received:2020-09-11 Accepted:2020-12-01 Published:2021-08-12 Published online:2021-01-04
  • Contact: SONG Ji-Qing,ZHOU Wen-Bin
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300102)

摘要:

在黄土高原地区, 对覆膜条件下玉米叶片代谢组变化规律的研究是探索覆膜增产生理机制的重要方面。本研究采用气相色谱-四极杆-飞行时间质谱(GC-QTOF)技术, 对2种覆膜方式(塑料膜覆盖和不覆盖)、2个密度(7.5×104株 hm-2和10.5×104株 hm-2)和2个品种(郑单958和先玉335)的吐丝期玉米叶片进行了代谢组学分析。从差异代谢物个数来看, 先玉335对覆膜的响应大于郑单958, 较高的种植密度缩小了覆膜与无覆膜处理间叶片代谢的差异。主成分分析表明, 覆膜处理和品种均对代谢物组成产生了重大影响。覆膜引起的代谢谱差异主要是由柠檬酸等有机酸和氨基酸造成的; 品种引起的代谢组差异主要是由辛酸等烷酸和酚类造成的。相关分析表明, 叶绿醇、白藜芦醇、葡萄糖-6-磷酸与玉米籽粒产量呈显著正相关关系, 而甘油与之呈显著负相关关系。在覆膜条件下, 与呼吸作用及清除光呼吸产物相关的缬氨酸、异亮氨酸及蛋氨酸, 与三羧酸循环相关的异柠檬酸以及可减轻光抑制的蛋氨酸、N-乙酰基天冬氨酸等代谢物的水平整体呈升高趋势。以上结果表明, 在覆膜条件下, 消除光呼吸产物及减少光抑制的相关代谢物的积累是叶片净光合速率提高的代谢基础; 抗氧化及能量代谢相关的代谢物在提高产量的过程中发挥了重要作用。

关键词: 地膜覆盖, 叶片, 代谢组, 产量, 抗氧化, 玉米

Abstract:

In the Loess Plateau, the study of leaf metabolomics under plastic mulching is an important step to explore the mechanism of plastic film mulching to increase grain yield in maize. Metabolomics analysis was performed on the leaves of two maize cultivars (Zhengdan 958 and Xianyu 335) under two planting densities (7.5×104 and 10.5×104 plant hm-2) and two mulching modes (plastic film mulching and no mulching ) at silking stage using gas chromatography-quadrupole-time of flight mass spectrometry (GC-QTOF) technology. In term of the number of differential metabolites, the response of Xianyu 335 to plastic film mulching was greater than that of Zhengdan 958. The higher planting density reduced the difference in leaf metabolism between plastic film mulching and no mulching. The principal component analysis revealed that both the mulching treatment and the cultivar had significant impacts on the composition of the metabolites. The separation of metabolic spectrum along plastic film mulching was mainly driven by organic acids such as citric acid and amino acids; the separation along cultivar was mainly driven by alkanoic acids and phenols. Correlation analysis indicated that resveratrol, phytol and glucose-6-phosphate had significant positive correlations with maize grain yield, whereas glycerol had a significant negative correlation with it. Under plastic film mulching condition, the levels of valine, isoleucine and methionine related to respiration and elimination of photorespiration products; isocitrate related to tricarboxylic acid cycle, methionine, N-acetylaspartic acid and other metabolites that could reduce photoinhibition showed an overall increasing trend. These results indicated that, under plastic film mulching condition, the antioxidant and energy metabolism-related metabolites played important roles in increasing grain yield. The elimination of photorespiration products and the accumulation of metabolites to alleviate photoinhibition were the metabolic bases for the increase of net photosynthetic rate in maize leaves.

Key words: plastic film mulching, leaf, metabolome, yield, antioxidant, maize

图1

不同地膜覆盖模式示意图 玉米生长在宽窄行垄沟结构的沟中。A: FM, 宽(80 cm)窄(40 cm)行垄沟全膜覆盖; B: NM, 宽(80 cm)窄(40 cm)行垄沟无覆盖。"

图2

不同处理下玉米叶片代谢组的主成分分析 A: 第一主成分(PC1)和第二主成分(PC2)的得分图; B: PC1前十位正载荷和负载荷的代谢物; C: PC2前十位正载荷和负载荷的代谢物。FMZL: 地膜覆盖低密度种植的ZD958; FMZH: 地膜覆盖高密度种植的ZD958; FMXL: 地膜覆盖低密度种植的XY335; FMXH: 地膜覆盖高密度种植的XY335; NMZL: 无覆盖低密度种植的ZD958; NMZH: 无覆盖高密度种植的ZD958; NMXL: 无覆盖低密度种植的XY335; NMXH: 无覆盖高密度种植的XY335。其中绿色色块代表较低的含量, 红色色块代表较高的含量。"

图3

不同处理组间差异代谢物的个数 处理同图2。"

图4

不同处理间差异代谢物韦恩图 处理同图2。数字表示2组处理间具有显著差异的代谢物数目。"

图5

覆膜和无覆膜条件下玉米叶片中41种主要代谢物的层次聚类分析及主要分类的代表性物质 处理同图2。其中绿色色块代表较低的含量, 红色色块代表较高的含量。"

图6

玉米叶片的代谢网络变化情况 红色圆代表在地膜覆盖处理下总体上调的物质, 绿色圆代表在地膜覆盖处理下总体下调的物质。8个不同的色块从左到右依次代表FMZL、FMZH、FMXL、FMXH、NMZL、NMZH、NMXL、NMXH, 处理同图2。其中绿色色块代表较低的含量, 红色色块代表较高的含量。"

表1

玉米单株籽粒产量及产量构成要素"

处理
Treatment
单株籽粒产量
Grain yield per plant (g)
每穗籽粒数
Number of kernels per ear
千粒重
1000-kernel weight (g)
FMZL 210.44 ± 14.22 a 576.21 ± 38.56 ab 295.97 ± 5.10 abc
FMZH 138.76 ± 7.97 c 561.87 ± 22.38 abc 279.74 ± 24.07 bc
FMXL 185.19 ± 4.76 b 620.53 ± 31.70 a 319.36 ± 29.09 a
FMXH 132.57 ± 8.32 c 558.35 ± 26.93 abc 287.68 ± 7.87 bc
NMZL 183.72 ± 6.89 b 492.40 ± 48.18 d 302.10 ± 3.71 ab
NMZH 108.04 ± 9.95 d 507.97 ± 22.00 cd 297.22 ± 10.59 abc
NMXL 141.91 ± 7.16 c 530.95 ± 42.23 bcd 304.90 ± 5.95 ab
NMXH 126.11 ± 7.22 c 471.89 ± 29.38 d 270.69 ± 16.18 c
变异来源Source of variation
覆膜Plastic film mulching ** ** **
密度Density ** ** **
品种Cultivar ** NS *
覆膜×密度Plastic film mulching × Density * NS NS
覆膜×品种Plastic film mulching × Cultivar NS NS NS
密度×品种Density × Cultivar ** * NS
覆膜×密度×品种
Plastic film mulching × Density × Cultivar
** NS NS

图7

代谢物水平和玉米籽粒产量的相关性 r和P分别是通过Pearson相关分析得出的相关系数和P值。"

图8

代谢物水平和玉米单株生物量的相关性 r和P分别是通过Pearson相关分析得出的相关系数和P值。"

[1] Lobell D B, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science, 2011,333:616-620.
doi: 10.1126/science.1204531
[2] Sherwood S, Fu Q. Climate change: a drier future? Science, 2014,343:737-739.
doi: 10.1126/science.1247620
[3] Iglesias A, Garrote L. Adaptation strategies for agricultural water management under climate change in Europe. Agric Water Manage, 2015,155:113-124.
doi: 10.1016/j.agwat.2015.03.014
[4] Li F M, Wang P, Wang J, Xu J Z. Effects of irrigation before sowing and plastic film mulching on yield and water uptake of spring wheat in semiarid Loess Plateau of China. Agric Water Manage, 2004,67:77-88.
doi: 10.1016/j.agwat.2004.02.001
[5] Li S X, Wang Z H, Malhi S S, Li S Q. Nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of China. Adv Agron, 2009,102:223-265.
[6] Liu Q F, Chen Y, Liu Y, Wen X X, Liao Y C. Coupling effects of plastic film mulching and urea types on water use efficiency and grain yield of maize in the Loess Plateau, China. Soil Tillage Res, 2016,157:1-10.
doi: 10.1016/j.still.2015.11.003
[7] Mzirai O B, Tumbo S D. Macro-catchment rainwater harvesting systems: challenges and opportunities to access runoff. J Anim Plant Sci, 2010,7:789-800.
[8] 张万恒, 张恒嘉, 王泽义, 高佳. 秸秆覆盖方式对西北旱作马铃薯产量效益的影响. 农业工程, 2018,8(12):85-88.
Zhang W H, Zhang H J, Wang Z Y, Gao J. Effect of straw mulching on yield of potato in drought region of Northwest China. Agric Eng, 2018,8(12):85-88 (in Chinese with English abstract).
[9] 唐学芬, 赵文举, 李宗礼, 郁文. 压砂地土壤盐分空间变异规律. 水土保持通报, 2016,36(3):18-23.
Tang X F, Zhao W J, Li Z L, Yu W. Variation pattern of soil Salinity of gravel-sand mulched field. Bull Soil Water Conser, 2016,36(3):18-23 (in Chinese with English abstract).
[10] 李憑峰, 谭煌, 王嘉航, 杨培岭. 滴灌水肥条件对樱桃产量、品质和土壤理化性质的影响. 农业机械学报, 2017,48(7):236-246.
Li P F, Tan H, Wang J, Yang P L. Effects of drip irrigation water and fertilizer conditions on cherry yield, quality and soil physical and chemical properties. Trans CSAM, 2017,48(7):236-246 (in Chinese with English abstract).
[11] Zhang X D, Yang L C, Xue X K, Kamran M, Ahmad I, Dong Z Y, Liu T N, Jia Z K, Zhang P, Han Q F. Plastic film mulching stimulates soil wet-dry alternation and stomatal behavior to improve maize yield and resource use efficiency in a semi-arid region. Field Crops Res, 2019,233:101-113.
doi: 10.1016/j.fcr.2019.01.002
[12] 王星垚, 李援农, 银敏华, 徐袁博, 任全茂, 徐路全. 不同地膜对土壤水热状况和冬小麦植株氮素的影响. 节水灌溉, 2018, (2):40-46.
Wang X Y, Li Y N, Yin M H, Xu Y B, Ren Q M, Xu L Q. Effects of different mulch films on soil hydrothermal regimes and the plant nitrogen accumulation and translocation of winter wheat. Water Sav Irrig, 2018, (2):40-46 (in Chinese with English abstract).
[13] 李昊, 李世平, 南灵, 李河, 郭清卉. 中国棉花地膜覆盖产量效应的meta分析. 农业机械学报, 2017,48(7):228-235.
Li H, Li S P, Nan L, Li H, Guo Q H. Meta-analysis of effect of plastic film mulching on cotton yield in China. Trans CSAM, 2017,48(7):228-235 (in Chinese with English abstract).
[14] Hou F Y, Dong S X, Xie B T, Zhang H Y, Li A X, Wang Q M. Mulching with plastic film improved the root quality of summer-sown sweet potato (Ipomoea batatas (L.) Lam.) in Northern China. J Integr Agric, 2019,18:982-991.
doi: 10.1016/S2095-3119(18)61994-X
[15] 薛吉全, 张仁和, 李凤艳, 张兴华. 陕西玉米育种现状、问题与对策. 玉米科学, 2008,16(2):144-146.
Xue J Q, Zhang R H, Li F Y, Zhang X H. Current status, problem and strategy of maize breeding in Shananxi Province. J Maize Sci, 2008,16(2):139-141 (in Chinese with English abstract).
[16] Gan Y T, Siddique K H M, Turner N C, Li X G, Niu J Y, Yang C, Liu L P, Chai Q. Ridge-furrow mulching systems-an innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv Agron, 2013,118:429-476.
[17] Hou P, Cui Z L, Bu L D, Yang H S, Zhang F S, Li S K. Evaluation of a modified hybrid-maize model incorporating a newly developed module of plastic film mulching. Crop Sci, 2014,54:2796-2804.
doi: 10.2135/cropsci2013.11.0747
[18] Wang Y J, Xie Z K, Malhi S S, Vera C L, Zhang Y B, Guo Z H. Effects of gravel-sand mulch, plastic mulch and ridge and furrow rainfall harvesting system combinations on water use efficiency, soil temperature and watermelon yield in a semi-arid Loess Plateau of northwestern China. Agric Water Manage, 2011,101:88-92.
doi: 10.1016/j.agwat.2011.09.006
[19] Mo F, Wang J Y, Zhou H, Luo C L, Zhang X F, Li X Y, Li F M, Xiong L B, Kavagi L, Nguluu S N, Xiong Y C. Ridge-furrow plastic-mulching with balanced fertilization in rainfed maize (Zea mays L.): an adaptive management in east African Plateau. Agric For Meteorol, 2017,236:100-112.
doi: 10.1016/j.agrformet.2017.01.014
[20] Mckenzie C L, Lapointe S L, Duncan L W. Landscape fabric as a physical barrier to neonate Diaprepes abbreviatus (Coleoptera: Curculionidae). Flor Entomol, 2001,84:721-722.
[21] Wang C B, Wang H, Zhao X M, Chen B H, Wang F L. Mulching affects photosynthetic and chlorophyll a fluorescence characteristics during stage III of peach fruit growth on the no mulching semiarid Loess Plateau of China. Sci Hortic (Amsterdam), 2015,194:246-254.
doi: 10.1016/j.scienta.2015.08.012
[22] Hou F Y, Zhang L M, Xie B T, Dong S X, Zhang H Y, Li A X, Wang Q M. Effect of plastic mulching on the photosynthetic capacity, endogenous hormones and root yield of summer-sown sweet potato (Ipomoea batatas (L.) Lam.) in Northern China. Acta Physiol Plant, 2015,37:1-10.
doi: 10.1007/s11738-014-1746-y
[23] Ali S, Xu Y Y, Jia Q M, Ahmad I, Ma X C, Henchiri M, Ren X L, Zhang P, Cai T, Zhang J H, Jia Z K. Ridge-furrow mulched with plastic film improves the anti-oxidative defence system and photosynthesis in leaves of winter wheat under deficit irrigation. PLoS One, 2018,13:e0200277.
doi: 10.1371/journal.pone.0200277
[24] Ali S, Xu Y Y, Jia Q M, Ma X C, Ahmad I, Adnan M, Gerard R, Ren X L, Zhang P, Cai T, Zhang J H, Jia Z K. Interactive effects of plastic film mulching with supplemental irrigation on winter wheat photosynthesis, chlorophyll fluorescence and yield under simulated precipitation conditions. Agric Water Manage, 2018,207:1-14.
doi: 10.1016/j.agwat.2018.05.013
[25] Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger A E. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc Natl Acad Sci USA, 2012,109:8872-8877.
doi: 10.1073/pnas.1120813109
[26] Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus J L, Palacios-Rojas N, Fernie A R. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol Plant, 2012,5:401-417.
doi: 10.1093/mp/ssr102
[27] Degenkolbe T, Do P T, Kopka J, Zuther E, Hincha D K, Köhl K I. Identification of drought tolerance markers in a diverse population of rice cultivars by expression and metabolite profiling. PLoS One, 2013,8:e63637.
doi: 10.1371/journal.pone.0063637
[28] Hill C B, Taylor J D, Edwards J, Mather D, Langridge P, Bacic A, Roessner U. Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Sci, 2015,233:143-154.
doi: 10.1016/j.plantsci.2015.01.008
[29] Jones R J, Simmon S R. Effect of altered source-sink ratio on growth of maize kernels. Crop Sci, 1983,23:129-134.
doi: 10.2135/cropsci1983.0011183X002300010038x
[30] Tollenaar M, Lee E A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica, 2006,51:399-408.
[31] Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran L P. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol, 2014,202:35-49.
doi: 10.1111/nph.2014.202.issue-1
[32] Niu L, Yan Y, Hou P, Bai W, Zhao R, Wang Y, Li S, Du T, Zhao M, Song J, Zhou W. Influence of plastic film mulching and planting density on yield, leaf anatomy, and root characteristics of maize on the Loess Plateau. Crop J, 2020,8:548-564.
doi: 10.1016/j.cj.2019.12.002
[33] Ren B Z, Liu W, Zhang J W, Dong S T, Liu P, Zhao B. Effects of plant density on the photosynthetic and chloroplast characteristics of maize under high-yielding conditions. Sci Nat-Heidelberg, 2017,104:12.
[34] 明博, 谢瑞芝, 侯鹏, 李璐璐, 王克如, 李少昆. 2005-2016年中国玉米种植密度变化分析. 中国农业科学, 2017,50:1960-1972.
Ming B, Xie R Z, Hou P, Li L L, Wang K R, Li S K. Changes of maize planting density in China. 2017,50:1960-1972 (in Chinese with English abstract).
[35] Glaubitz U, Erban A, Kopka J, Hincha D K, Zuther E. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner. J Exp Bot, 2015,66:6385-6397.
doi: 10.1093/jxb/erv352
[36] Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie A R, Steinhauser D. GMD@CSB.DB: the golm metabolome database. Bioinformatics, 2005,21:1635-1638.
doi: 10.1093/bioinformatics/bti236
[37] Hummel J, Strehmel N, Selbig J, Walther D, Kopka J. Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics, 2010,6:322-333.
pmid: 20526350
[38] Jannink J L, Lorenz A J, Iwata H. Genomic selection in plant breeding: from theory to practice. Brief Funct Genom, 2010,9:166-177.
doi: 10.1093/bfgp/elq001
[39] Obata T, Fernie A R. The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci, 2012,69:3225-3243.
doi: 10.1007/s00018-012-1091-5
[40] Stewart G R, Larher F. Accumulation of Amino Acids and Related Compounds in Relation to Environmental Stress. In: Miflin B J, eds. Amino Acids and Derivatives. New York: Academic Press, 2001. pp 609-635.
[41] Good A G, Zaplachinski S T. The effects of drought stress on free amino acid accumulation and protein synthesis in Brasska napus. Physiol Plant, 1994,90:9-14.
[42] Huang T F, Jander G. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana. Planta, 2017,246:737-747.
doi: 10.1007/s00425-017-2727-3
[43] Rai V K. Role of amino acids in plant responses to stresses. Biol Plant, 2002,45:481-487.
doi: 10.1023/A:1022308229759
[44] Bauwe H, Hagemann M, Kern R, Timm S. Photorespiration has a dual origin and manifold links to central metabolism. Curr Opin Plant Biol, 2012,15:269-275.
doi: 10.1016/j.pbi.2012.01.008
[45] 秦岭, 陈二影, 张艳亭, 杨延兵, 孔清华, 张华文, 王海莲, 王润丰, 管延安, 阮颖. 干旱及复水对谷子脯氨酸积累和SiP5CR基因表达的影响. 分子植物育种, 2018,16:7460-7465.
Qin L, Chen E Y, Zhang Y T, Yang Y B, Kong Q H, Zhang H W, Wang H L, Wang R F, Guan Y A, Ruan Y. Effects of drought and rehydration on proline accumulation and SiP5CR gene expression from foxtail millet (Setaria italica (L.) Beauv). Mol Plant Breed, 2018,16:7460-7465 (in Chinese with English abstract).
[46] Filippou P, Antoniou C, Fotopoulos V. The nitric oxide donor sodium nitroprusside regulates polyamine and proline metabolism in leaves of Medicago truncatula plants. Free Rad Bio Med, 2013,56:172-183.
doi: 10.1016/j.freeradbiomed.2012.09.037
[47] Joshi V, Joung J, Fei Z J, Jander G. Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids, 2010,39:933-947.
doi: 10.1007/s00726-010-0505-7
[48] Araújo W L, Tohge T, Ishizaki K, Leaver C J, Fernie A R. Protein degradationan: an alternative respiratory substrate for stressed plants. Trends Plant Sci, 2011,16:489-498.
[49] Fait A, Fromm H, Walter D, Galili G, Fernie A R. Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci, 2008,13:14-19.
doi: 10.1016/j.tplants.2007.10.005
[50] Yadav A K, Carroll A J, Estavillo G M, Rebetzke G J, Pogson B J. Wheat drought tolerance in the field is predicted by amino acid responses to glasshouse-imposed drought. J Exp Bot, 2019,70:4931-4948.
doi: 10.1093/jxb/erz224
[51] Ravanel S, Gakiere B, Job D, Douce R. The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA, 1998,95:7805-7812.
doi: 10.1073/pnas.95.13.7805
[52] Bryan J K. Differential regulation of maize homoserine dehydrogenase under physiological conditions. Plant Physiol, 1990,92:785-791.
pmid: 16667350
[53] Lamari N, Zhendre V, Urrutia M, Bernillon S, Maucourt M, Deborde C, Prodhomme D, Jacob D, Ballias P, Rolin D, Sellier H, Rabier D, Gibon Y, Giauffret C, Moing A. Metabotyping of 30 maize hybrids under early-sowing conditions reveals potential marker-metabolites for breeding. Metabolomics, 2018,14:132.
doi: 10.1007/s11306-018-1427-8 pmid: 30830438
[54] Obata T, Witt S, Lisec J, Palacios-Rojas N, Florez-Sarasa I, Araus J L, Cairns J E, Yousfi S, Fernie A R. Metabolite profiles of maize leaves in drought, heat and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol, 2015,169:2665-2683.
[55] Mahal H S, Mukherjee T. Scavenging of reactive oxygen radicals by resveratrol: antioxidant effect. Res Chem Intermed, 2006,32:59-71.
doi: 10.1163/156856706775012941
[56] Islam M T, Ali E S, Uddin S J, Shaw S, Islam M A, Ahmed M I, Chandra Shill M, Karmakar U K, Yarla N S, Khan I N, Billah M M, Pieczynska M D, Zengin G, Malainer C, Nicoletti F, Gulei D, Berindan-Neagoe I, Apostolov A, Banach M, Yeung A W K, El-Demerdash A, Xiao J, Dey P, Yele S, Jóźwik A, Strzałkowska N, Marchewka J, Rengasamy K R R, Horbańczuk J, Kamal M A, Mubarak M S, Mishra S K, Shilpi J A, Atanasov A G. Phytol: a review of biomedical activities. Food Chem Toxicol, 2018,121:82-94.
doi: 10.1016/j.fct.2018.08.032
[57] Eastmond P J. Glycerol-insensitive Arabidopsis mutants: gli1 seedlings lack glycerol kinase, accumulate glycerol and are more resistant to abiotic stress. Plant J, 2004,37:617-625.
pmid: 14756771
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[9] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[10] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[11] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[12] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[13] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!