欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (8): 1540-1550.doi: 10.3724/SP.J.1006.2021.02069

• 耕作栽培·生理生化 • 上一篇    下一篇

机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响

陈云1,2(), 刘昆1, 张宏路1, 李思宇1, 张亚军2, 韦佳利2, 张耗1, 顾骏飞1, 刘立军1,*(), 杨建昌1   

  1. 1扬州大学江苏省作物遗传生理重点实验室/江苏省粮食作物现代产业技术协同创新中心/江苏省作物基因组学和分子育种重点实验室, 江苏扬州 225009
    2扬州大学生物科学与技术学院, 江苏扬州 225009
  • 收稿日期:2020-10-22 接受日期:2021-01-13 出版日期:2021-08-12 网络出版日期:2021-02-18
  • 通讯作者: 刘立军
  • 作者简介:E-mail: yunchen@yzu.edu.cn, Tel: 0514-87979320
  • 基金资助:
    国家重点研发计划项目(2016YFD0300502);国家重点研发计划项目(2017YFD0301206);国家自然科学基金项目(31871557);国家自然科学基金项目(31671614);江苏省农业科技自主创新资金项目(cx183007);江苏省作物遗传生理重点实验室开放课题(YSCL201807);江苏高校优势学科建设工程项目资助

Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars

CHEN Yun1,2(), LIU Kun1, ZHANG Hong-Lu1, LI Si-Yu1, ZHANG Ya-Jun2, WEI Jia-Li2, ZHANG Hao1, GU Jun-Fei1, LIU Li-Jun1,*(), YANG Jian-Chang1   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2020-10-22 Accepted:2021-01-13 Published:2021-08-12 Published online:2021-02-18
  • Contact: LIU Li-Jun
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300502);National Key Research and Development Program of China(2017YFD0301206);National Natural Science Foundation of China(31871557);National Natural Science Foundation of China(31671614);Jiangsu Agriculture Science and Technology Innovation Fund(cx183007);Open Project of Jiangsu Key Laboratory of Crop Genetics(YSCL201807);Physiology, and the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要:

机插密度对优质食味水稻品种籽粒淀粉合成的影响尚不明确。试验以3个江苏省代表性优质食味水稻品种南粳9108、南粳5055和南粳46为材料, 行距固定为30 cm, 通过设置10、12、14、16和18 cm株距, 形成33.3×104、27.8×104、23.8×104、20.8×104和18.5×104穴 hm-2 5种机插密度, 研究了机插密度对上述优质食味水稻品种产量和籽粒淀粉合成的影响, 并观察了穗肥施氮量减半施用对优质食味水稻籽粒淀粉合成的调控效应。结果表明: (1) 3个优质食味水稻品种产量均在密度为27.8×104穴 hm-2时最高。成熟期稻米直链淀粉含量随机插密度增加呈先下降后上升的趋势, 支链淀粉含量则不断下降。机插密度控制在27.5×104~29.9×104穴 hm-2时, 有利于提高上述优质食味水稻品种的食味值。(2) 随机插密度增加, 颗粒结合态淀粉合成酶(granule-bound starch synthase, GBSS)和ADP-葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase, AGP)在籽粒灌浆前中期(抽穗后8~20 d)的活性有所上升, 但在灌浆后期迅速下降, 而机插密度对淀粉分支酶(starch branching enzyme, SBE)活性无明显影响。其中, 抽穗后12~16 d籽粒中GBSS和AGP活性与直链淀粉和总淀粉含量呈显著或极显著正相关。(3) 与正常穗肥相比, 穗肥减半处理能显著降低优质食味水稻品种灌浆前中期籽粒中GBSS和AGP活性, 降低稻米直链淀粉含量, 提升优质食味稻米的食味值。上述结果表明, 机插密度可通过调控灌浆前中期籽粒中淀粉合成关键酶(GBSS和AGP)活性, 调控直链淀粉含量进而影响稻米食味值。合理的机插密度和穗肥施用量有助于进一步改善优质食味稻米的食味品质。

关键词: 优质食味水稻, 机插密度, 淀粉合成关键酶, 食味值, 直链淀粉

Abstract:

The effect of machine transplanting density on grain starch synthesis in good taste rice cultivars (GTRC) is still unclear. In the experiment, three representative GTRC of Nanjing 9108, Nanjing 5055, and Nanjing 46 in Jiangsu province were used as materials. Five machine transplanting densities of 33.3 × 104, 27.8 × 104, 23.8 × 104, 20.8 × 104, and 18.5 × 104 hills hm-2 were formed with the row spacing at 30 cm and the plant spacing of 10, 12, 14, 16, and 18 cm, respectively. The effects of machine transplanting density on yield and grain starch synthesis in above three rice cultivars were studied, and the regulation mechanism of halving normal nitrogen (N) rate of panicle nitrogen fertilizer on the starch synthesis was also observed. The results were as follows: (1) The grain yield of the three GTRC were highest at the transplanting density of 27.8 × 104 hills hm-2. The amylose content at mature stage of the three GTRC decreased first and then increased with the increase in machine transplanting density, while the amylopectin content continued to decrease. When the machine transplanting density was controlled at 27.5 × 104-29.9 × 104hills hm-2, it was beneficial to improve the taste value of the above-mentioned GTRC. (2) With the increase in machine transplanting density, the activities of granule-bound starch synthase (GBSS) and ADP-glucose pyrophosphorylase (AGP) were increased in the early and middle stages of grain filling (8-20 days after heading), and were decreased rapidly at later grain filling stage. Machine transplanting density had no significant effect on starch branching enzyme (SBE) activity. Among them, the activities of GBSS and AGP in grains at 12-16 days after heading were significantly and positively correlated with the contents of amylose and total starch. (3) Compared with normal N rate of panicle nitrogen fertilizer, half normal N rate could significantly decrease the activities of GBSS and AGP in grains during the early and middle stages of grain filling, reduce the amylose content of rice, and further improve the taste value of GTRC. These results indicated that machine transplanting density could regulate the amylose content due to the activities variations of key enzymes involved in starch synthesis (GBSS and AGP) in the grains during the early and middle stages of grain filling, thus resulting in the difference of rice taste value. Reasonable machine transplanting density and panicle nitrogen fertilizer rate are helpful to further improve the eating quality of GTRC.

Key words: good taste rice cultivar, machine transplanting density, key enzymes involved in starch synthesis, taste value, amylose

表1

机插密度对优质食味水稻品种产量和稻米主要品质指标的方差分析"

变异来源
Source of variation
自由度
Degree of freedom
产量
Grain yield
整精米率
Head rice percentage
垩白粒率
Chalky kernel percentage
直链淀粉含量
Amylose content
蛋白质含量
Protein content
食味值
Taste value
年份 Year (Y) 1 ns ns ns ns ns ns
密度 Density (D) 4 34.0** 3.33* 9.1** 10.5** 7.76** 10.1**
品种 Cultivar (C) 2 38.9** 65.4** 2645.8** 33.8** 3.94* 10.2**
年份×密度 Y × D 4 ns ns ns ns ns ns
年份×品种Y × C 2 ns ns ns ns ns ns
密度×品种D × C 8 ns ns ns ns ns ns
年份×密度×品种Y × D × C 8 ns ns ns ns ns ns

图1

机插密度对优质食味水稻品种产量及其构成因素的影响(2018年) 18.5、20.8、23.8、27.8和33.3分别表示机插密度为18.5×104、20.8×104、23.8×104、27.8×104和33.3×104穴 hm-2。"

图2

机插密度对优质食味水稻品种淀粉含量和食味值的影响(2018年)"

图3

优质食味水稻品种食味值与直链淀粉含量、支链淀粉含量和总淀粉含量的相关(2018年)"

表2

优质食味水稻品种获得最低直链淀粉含量时的机插密度(2018年)"

品种
Cultivar
机插密度(x, ×104穴 hm-2)与直链淀粉含量(y, %)关系方程
Equation between machine transplanting density (x, ×104 hills hm-2) and amylose content (y, %)
R2 xopt1
(x, ×104 hills hm-2)
xopt2
(x, cm)
ymin
(%)
南粳9108 Nanjing 9108 y=0.011x2-0.657x+21.5 0.912 29.9 11.1 11.7
南粳5055 Nanjing 5055 y=0.012x2-0.659x+19.7 0.915 27.5 12.1 10.7
南粳46 Nanjing 46 y=0.012x2-0.674x+20.8 0.966 28.1 11.9 11.3

图4

机插密度对优质食味水稻品种籽粒直链淀粉和总淀粉积累动态的影响(2018年) 18.5、20.8、23.8、27.8和33.3分别表示机插密度为18.5×104、20.8×104、23.8×104、27.8×104和33.3×104穴 hm-2。"

图5

机插密度对优质食味水稻品种籽粒中淀粉分支酶(SBE)活性的影响(2018年) 18.5、20.8、23.8、27.8和33.3分别表示机插密度为18.5×104、20.8×104、23.8×104、27.8×104和33.3×104穴 hm-2。"

图6

机插密度对优质食味水稻品种籽粒中颗粒结合态淀粉合成酶(GBSS)活性的影响(2018年) 18.5、20.8、23.8、27.8和33.3分别表示机插密度为18.5×104、20.8×104、23.8×104、27.8×104和33.3×104穴 hm-2。"

图7

机插密度对优质食味水稻品种籽粒中ADP-葡萄糖焦磷酸化酶(AGP)活性的影响(2018年) 18.5、20.8、23.8、27.8和33.3分别表示机插密度为18.5×104、20.8×104、23.8×104、27.8×104和33.3×104穴 hm-2。"

表3

优质食味水稻抽穗后不同时期籽粒中淀粉合成关键酶活性与成熟期稻米直链淀粉、总淀粉含量的相关(2018年)"

酶类型
Enzyme type
淀粉含量
Starch content
抽穗后天数 Days after heading
8 d 12 d 16 d 20 d 24 d 28 d 32 d
SBE 直链淀粉含量Amylose content 0.303 -0.170 -0.419 0.353 -0.255 0.308 0.603*
总淀粉含量Total starch content -0.110 -0.032 0.095 0.826** -0.747** 0.624* -0.149
GBSS 直链淀粉含量Amylose content -0.505 0.523* 0.728** 0.460 0.031 0.209 0.468
总淀粉含量Total starch content 0.095 0.659** 0.701** 0.771** -0.652** -0.573* -0.468
AGP 直链淀粉含量Amylose content -0.336 0.865** 0.819** 0.431 0.279 0.092 0.084
总淀粉含量Total starch content 0.097 0.699** 0.762** 0.776** -0.561* -0.719** -0.195

表4

穗肥减半对优质食味水稻品种产量、直链淀粉含量、总淀粉含量和食味值的影响(2019年)"

品种
Cultivar
处理
Treatment
产量
Grain yield
(t hm-2)
直链淀粉含量
Amylose content (%)
支链淀粉含量
Amylopectin
content (%)
总淀粉含量
Total starch content (%)
食味值
Taste value
南粳9108 Nanjing 9108 正常穗肥用量 NR 11.3 a 11.5 a 54.8 a 66.3 a 75.9 b
穗肥用量减半 HR 11.0 a 10.9 b 54.9 a 65.8 a 79.6 a
南粳5055 Nanjing 5055 正常穗肥用量 NR 10.7 a 10.2 a 55.9 a 66.1 a 78.4 b
穗肥用量减半 HR 10.4 a 9.5 b 53.7 b 63.2 b 82.7 a
南粳46 Nanjing 46 正常穗肥用量 NR 10.1 a 11.3 a 55.2 a 66.5 a 73.3 b
穗肥用量减半 HR 9.9 a 10.4 b 54.1 a 63.5 a 78.6 a

图8

穗肥减半对优质食味水稻抽穗后籽粒中淀粉合成关键酶活性的影响(2019年) NR: 正常穗肥用量; HR: 穗肥用量减半。SBE: 淀粉分支酶; GBSS: 颗粒结合态淀粉合成酶; AGP: ADP-葡萄糖焦磷酸化酶。酶活性以抽穗后12 d和16 d两次测定的平均值表示。"

[1] Wang Y, Xue Y, Li J. Towards molecular breeding and improvement of rice in China. Trends Plant Sci, 2005,10:610-614.
doi: 10.1016/j.tplants.2005.10.008
[2] Huang M, Chen J, Cao F, Zou Y. Increased hill density can compensate for yield loss from reduced nitrogen input in machine- transplanted double-cropped rice. Field Crops Res, 2018,221:333-338.
doi: 10.1016/j.fcr.2017.06.028
[3] Peng S, Tang Q, Zou Y. Current status and challenges of rice production in China. Plant Prod Sci, 2009,12:3-8.
doi: 10.1626/pps.12.3
[4] Xing Z, Hu Y, Qian H, Cao W, Guo B, Wei H, Xu K, Huo Z, Zhou G, Dai Q, Zhang H. Comparison of yield traits in rice among three mechanized planting methods in a rice-wheat rotation system. J Integr Agric, 2017,16:1451-1466.
doi: 10.1016/S2095-3119(16)61562-9
[5] Hu Q, Jiang W Q, Qiu S, Xing Z P, Hu Y J, Guo B W, Liu G D, Gao H, Zhang H C, Wei H Y. Effect of wide-narrow row arrangement in mechanical pot-seedling transplanting and plant density on yield formation and grain quality of japonica rice. J Integr Agric, 2020,19:1197-1214.
doi: 10.1016/S2095-3119(19)62800-5
[6] Liu Q, Zhou X, Li J, Xin C. Effects of seedling age and cultivation density on agronomic characteristics and grain yield of mechanically transplanted rice. Sci Rep, 2017,7:1-10.
doi: 10.1038/s41598-016-0028-x
[7] Zhu D, Zhang H, Guo B, Xu K, Dai Q, Wei C, Zhou G, Huo Z. Physicochemical properties of indica-japonica hybrid rice starch from Chinese varieties. Food Hydrocolloid, 2017,63:356-363.
doi: 10.1016/j.foodhyd.2016.09.013
[8] Chung H J, Liu Q, Lee L, Wei D. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocolloid, 2011,25:968-975.
doi: 10.1016/j.foodhyd.2010.09.011
[9] Li H, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem, 2016,196:702-711.
doi: 10.1016/j.foodchem.2015.09.112
[10] Yang Y, Lin G, Yu X, Wu Y, Xiong F. Rice starch accumulation at different endosperm regions and physical properties under nitrogen treatment at panicle initiation stage. Int J Biol Macromol, 2020,160:328-339.
doi: 10.1016/j.ijbiomac.2020.05.210
[11] Gilbert R G, Witt T, Hasjim J. What is being learned about starch properties from multiple-level characterization. Cereal Chem, 2013,90:312-325.
doi: 10.1094/CCHEM-11-12-0141-FI
[12] Hori K, Suzuki K, Iijima K, Ebana K. Variation in cooking and eating quality traits in Japanese rice germplasm accessions. Breed Sci, 2016,66:309-318.
doi: 10.1270/jsbbs.66.309
[13] Bhat F M, Riar C S. Physicochemical, cooking, and textural characteristics of grains of different rice (Oryza sativa L.) cultivars of temperate region of India and their interrelationships. J Text Stud, 2016,48:160-170.
doi: 10.1111/jtxs.2017.48.issue-2
[14] Bao J S. Toward understanding the genetic and molecular bases of the eating and cooking qualities of rice. Cereal Foods World, 2012,57:148-156.
doi: 10.1094/CFW-57-4-0148
[15] Patindol J A, Siebenmorgen T J, Wang Y J. Impact of environmental factors on rice starch structure: a review. Starch-Starke, 2015,67:42-54.
doi: 10.1002/star.v67.1-2
[16] Bello B K, Hou Y, Zhao J, Jiao G, Wu Y, Li Z, Wang Y, Tong X, Wang W, Yuan W, Wei X, Zhang J. NF-YB1-YC12-bHLH144 complex directly activates Wx to regulate grain quality in rice (Oryza sativa L.). Plant Biotechnol J, 2019,17:1222-1235.
doi: 10.1111/pbi.2019.17.issue-7
[17] Zhu D, Zhang H, Guo B, Xu K, Dai Q, Wei C, Zhou G, Huo Z. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocol, 2017,63:525-532.
doi: 10.1016/j.foodhyd.2016.09.042
[18] 刘立军, 王康君, 卞金龙, 熊溢伟, 陈璐, 王志琴, 杨建昌. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系. 作物学报, 2014,40:1999-2007.
Liu L J, Wang K G, Bian J L, Xiong Y W, Chen L, Wang Z Q, Yang J C. Differences in yield response to nitrogen fertilizer among rice cultivars and their relationship with root morphology and physiology. Acta Agron Sin, 2014,40:1999-2007 (in Chinese with English abstract).
[19] Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003,81:69-81.
doi: 10.1016/S0378-4290(02)00214-9
[20] Zhu D, Wei H, Guo B, Dai Q, Wei C, Gao H, Hu Y, Cui P, Li M, Huo Z, Xu K, Zhang H. The effects of chilling stress after anthesis on the physicochemical properties of rice (Oryza sativa L.) starch. Food Chem, 2017,237:936-941.
doi: 10.1016/j.foodchem.2017.06.039
[21] Feng F, Li Y, Qin X, Liao Y, Siddique K H M. Changes in rice grain quality of indica and japonica type varieties released in China from 2000 to 2014. Front Plant Sci, 2017,8:1-7.
[22] 胡雅杰, 吴培, 邢志鹏, 钱海军, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 机插方式和密度对水稻主要品质性状及淀粉RVA谱特征的影响. 扬州大学学报(农业与生命科学版), 2017,38(3):73-82.
Hu Y J, Wu P, Xing Z P, Qian H J, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Effect of different mechanical transplanted methods and plant density on grain quality and characteristic of starch RVA of rice. J Yangzhou Univ (Agric Life Sci Edn), 2017,38(3):73-82 (in Chinese with English abstract) .
[23] 季红娟, 张小祥, 赵步洪, 郑青松, 陈刚, 李育红, 肖宁, 潘存红, 吴云雨, 蔡跃, 李爱宏. 不同播期和密度对直播粳稻扬粳3012产量及品质的影响. 扬州大学学报(农业与生命科学版), 2020,41(1):85-90.
Ji H J, Zhang X X, Zhao B H, Zheng Q S, Chen G, Li Y H, Xiao N, Pan C H, Wu Y, Cai Y, Li A H. Effect of different sowing date and density on yield and quality of Yangjing 3012 in direct-seeding rice. J Yangzhou Univ (Agric Life Sci Edn), 2020,41(1):85-90 (in Chinese with English abstract).
[24] Zhou T, Zhou Q, Li E, Yuan L, Wang W, Zhang H, Liu L, Wang Z, Yang J, Gu J. Effects of nitrogen fertilizer on structure and physicochemical properties of ‘super’ rice starch. Carbohyd Polym, 2020,239:1-11.
[25] Smith A M, Denyer K, Martin C R. What controls the amount and structure of starch in storage organs? Plant Physiol, 1995,107:673-677.
doi: 10.1104/pp.107.3.673
[26] Smidansky E D, Meyer F D, Blakeslee B, Weglarz T E, Greene T W, Giroux M J. Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta, 2007,225:965-976.
pmid: 17021802
[27] Devi T A, Sarla N, Siddiq E A, Sirdeshmukh R. Activity and expression of adenosine diphosphate glucose pyrophosphorylase in developing rice grains: varietal differences and implications on grain filling. Plant Sci, 2010,178:123-129.
doi: 10.1016/j.plantsci.2009.10.008
[28] Mizuno K, Kimura K, Arai Y, Kawasaki T, Shimada H, Baba T. Starch branching enzymes from immature rice seeds. J Biochem, 1992,112:643-651.
pmid: 1478924
[29] Koo S H, Lee K Y, Lee H G. Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food Hydrocol, 2010,24:619-625.
doi: 10.1016/j.foodhyd.2010.02.009
[30] Hurkman W J, McCue K F, Altenbach S B, Korn A, Tanaka C K, Kothari K M, Johnson E L, Bechtel D B, Wilson J D, Anderson O D, DuPont F M. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci, 2003,164:873-881.
doi: 10.1016/S0168-9452(03)00076-1
[31] Gu J F, Chen J, Chen L, Wang Z Q, Zhang H, Yang J C. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s. Crop J, 2015,3:285-297.
doi: 10.1016/j.cj.2015.03.007
[32] Asaoka M, Okuno K, Sugimoto Y, Kawakami J, Fuwa H. Effect of environmental temperature during development of rice plants on some properties of endosperm starch. Starch-Starke, 1984,36:189-193.
doi: 10.1002/(ISSN)1521-379X
[33] Ahmed N, Tetlow I J, Nawaz S, Iqbal A, Mubin M, Nawazul Rehman M S, Butt A, Lightfoot D A, Maekawa M. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice. J Sci Food Agric, 2015,95:2237-2243.
doi: 10.1002/jsfa.2015.95.issue-11
[34] Ahmed N, Maekawa M, Tetlow I J. Effects of low temperature on grain filling, amylose content, and activity of starch biosynthesis enzymes in endosperm of basmati rice. Aust J Agric Res, 2008,59:599-604.
doi: 10.1071/AR07340
[35] Cheng F, Zhong L, Zhao N, Liu Y, Zhang G. Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties. Plant Growth Regul, 2005,46:87-95.
doi: 10.1007/s10725-005-7361-6
[36] 刘鑫燕, 李娟, 刘雪菊, 张昌泉, 顾铭洪, 刘巧泉. 可溶性淀粉合成酶与稻米淀粉精细结构关系的研究进展. 植物生理学报, 2014,50:1453-1458.
Liu X Y, Li J, Liu X J, Zhang C Q, Gu M H, Liu Q. Progress in the relationship between soluble starch synthases and starch fine structure in rice. Plant Physiol J, 2014,50:1453-1458 (in Chinese with English abstract).
[37] Pandey M K, Rani N S, Madhav M S, Sundaram R M, Varaprasad G S, Sivaranjani A K, Bohra A, Kumar G R, Kumar A. Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.). Biotechnol Adv, 2012,30:1697-1706.
doi: 10.1016/j.biotechadv.2012.08.011
[38] 胡群, 夏敏, 张洪程, 曹利强, 郭保卫, 魏海燕, 陈厚存, 韩宝富. 氮肥运筹对钵苗机插优质食味水稻产量及品质的影响. 作物学报, 2017,43:420-431.
Hu Q, Xia M, Zhang H C, Cao L Q, Guo B W, Wei H Y, Chen H C, Han B F. Effect of nitrogen application regime on yield and quality of mechanical pot-seedlings transplanting rice with good taste quality. Acta Agron Sin, 2017,43:420-431 (in Chinese with English abstract).
[39] 沈鹏, 罗秋香, 金正勋. 稻米蛋白质与蒸煮食味品质关系研究. 东北农业大学学报, 2003,34:378-381.
Shen P, Luo Q X, Jin Z X. Relationship between protein content and the cooking and eating quality properties of rice grain. J Northeast Agric Univ, 2003,34:378-381 (in Chinese with English abstract).
[40] 沈鹏, 金正勋, 罗秋香, 金学泳, 孙艳丽. 氮肥对水稻籽粒淀粉合成关键酶活性及蒸煮食味品质的影响. 东北农业大学学报, 2005,36:561-566.
Shen P, Jin Z X, Luo Q X, Jin X Y, Sun Y L. Effects of nitrogen fertilizer on the enzyme activities involved in the starch synthesis and eating and cooking quality in rice grain. J Northeast Agric Univ, 2005,36:561-566 (in Chinese with English abstract)
[41] 潘圣刚, 翟晶, 曹凑贵, 蔡明历, 王若涵, 黄胜奇, 李进山. 氮肥运筹对水稻养分吸收特性及稻米品质的影响. 植物营养与肥料学报, 2010,16:522-527.
Pan S G, Zhai J, Cao C G, Cai M L, Wang R H, Huang S Q, Li J S. Effects of nitrogen management practices on nutrition uptake and grain qualities of rice. Plant Nutr Fert Sci, 2010,16:522-527 (in Chinese with English abstract).
[42] Borrell A K, Garside A L, Fukai S, Reid D J. Grain quality of flooded rice is affected by season, nitrogen rate, and plant type. Aust J Agric Res, 1999,50:1399-1408.
doi: 10.1071/AR98054
[1] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[2] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[3] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
[4] 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637.
[5] 陈梦云,李晓峰,程金秋,任红茹,梁健,张洪程,霍中洋. 秸秆全量还田与氮肥运筹对机插优质食味水稻产量及品质的影响[J]. 作物学报, 2017, 43(12): 1802-1816.
[6] 姚姝,陈涛,张亚东,朱镇,赵庆勇,周丽慧,赵凌,赵春芳,王才林. 利用分子标记辅助选择聚合水稻Pi-taPi-bWx-mq基因[J]. 作物学报, 2017, 43(11): 1622-1631.
[7] 毛艇,李旭,李振宇,徐正进. 水稻Wx复等位基因基于PCR的功能标记开发与利用[J]. 作物学报, 2017, 43(11): 1715-1723.
[8] 胡群,夏敏,张洪程,曹利强,郭保卫,魏海燕,陈厚存,韩宝富. 氮肥运筹对钵苗机插优质食味水稻产量及品质的影响[J]. 作物学报, 2017, 43(03): 420-431.
[9] 胡群,夏敏,张洪程,曹利强,郭保卫,魏海燕,陈厚存,戴其根,霍中洋,许轲,林昌明,韩宝富. 氮肥运筹对钵苗机插优质食味水稻产量及氮素吸收利用的影响[J]. 作物学报, 2016, 42(11): 1666-1676.
[10] 陈佳娜,曹放波,谢小兵,单双吕,高伟,李志斌,黄敏,邹应斌*. 机插条件下低氮密植栽培对“早晚兼用”双季稻产量和氮素吸收利用的影响[J]. 作物学报, 2016, 42(08): 1176-1187.
[11] 许俊伟,孟天瑶,荆培培,张洪程*,李超,戴其根,魏海燕,郭保卫. 机插密度对不同类型水稻抗倒伏能力及产量的影响[J]. 作物学报, 2015, 41(11): 1767-1776.
[12] 姚坚强,鲍坚东,朱金庆,桂毅杰,沈秋芳,胡伟民,樊龙江. 中国糯玉米wx基因种质资源遗传多样性[J]. 作物学报, 2013, 39(01): 43-49.
[13] 于春花, 别同德, 王成, 张晓, 吴荣林, 程晓明, 王灿国, 赵芸, 程顺和. 小麦Wx基因近等基因系的创制及其对直链淀粉含量、面条感官品质的影响[J]. 作物学报, 2012, 38(03): 454-461.
[14] 孙健, 岳瑞雪, 钮福祥, 徐飞, 朱红. 淀粉型甘薯品种直链淀粉含量、糊化特性和乙醇发酵特性的关系[J]. 作物学报, 2012, 38(03): 479-486.
[15] 吴昆仑, 赵媛, 迟德钊. 青稞Wx基因多态性与直链淀粉含量的关系[J]. 作物学报, 2012, 38(01): 71-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!