欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (05): 706-713.doi: 10.3724/SP.J.1006.2016.00706

• 耕作栽培·生理生化 • 上一篇    下一篇

普通小麦类胡萝卜素组分的超高效液相色谱分离方法

李文爽1,夏先春1,何中虎1,2,*   

  1. 1中国农业科学院作物科学研究所 / 国家小麦改良中心,北京100081;2CIMMYT中国办事处,北京100081
  • 收稿日期:2015-09-07 修回日期:2016-03-02 出版日期:2016-05-12 网络出版日期:2016-03-11
  • 通讯作者: 何中虎, E-mail: zhhecaas@163.com
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)项目(2011-G(3)4)和科技部小麦玉米高效分子标记体系的研发和应用项目(2013DFG30530)资助。

Establishment of Ultra Performance Liquid Chromatography (UPLC) Protocol for Analyzing Carotenoids in Common Wheat

LI Wen-Shuang1,XIA Xian-Chun1,HE Zhong-Hu1,2,*   

  1. 1Institute of Crop Science / National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; 2CIMMYT-China Office, c/o CAAS, Beijing 100081, China
  • Received:2015-09-07 Revised:2016-03-02 Published:2016-05-12 Published online:2016-03-11
  • Contact: He Zhonghu, E-mail: zhhecaas@163.com
  • Supported by:

    This study was supported by the Program of Introducing International Super Agricultural Science and Technology (2011-G(3)4) and Ministry of Science and Technology (2013DFG30530).

摘要:

类胡萝卜素是影响小麦面粉及面制品颜色和营养品质的重要因素。本研究以中麦175 (软质麦)和中优206 (硬质麦)的面粉为试验材料,旨在优化小麦类胡萝卜素提取方法,建立超高效液相色谱(ultra performance liquid chromatography, UPLC)测定其组分的技术体系。研究表明,用含0.1% BHT的正己烷∶丙酮(80∶20, v/v)混合液作为提取液,结合恒温振荡法(300转 min–1, 35℃, 振荡1 h)的提取效果最好。以YMC C30胡萝卜素分析专用色谱柱(高100 mm, 直径4.6 mm, 粒径3 µm)洗脱,乙腈∶甲醇∶水∶三乙胺(81∶14∶5∶0.05, v/v/v/v)为流动相A,甲醇∶乙酸乙酯∶三乙胺(68∶32∶0.05, v/v/v)为流动相B,流速0.4 mL min–1,柱温35℃,分离时间25 min;以二极管阵列检测器(photodiode array, PDA)在450 nm波长下,能有效检测叶黄素、玉米黄质和β-胡萝卜素3种组分。该技术体系可作为普通小麦类胡萝卜素组分及营养品质研究的有效方法。

关键词: 普通小麦, 类胡萝卜素组分, 超高效液相色谱

Abstract:

Carotenoids is an important criterion in the assessment of color and nutritional qualities of end-use products in common wheat. In this study, grain powders of Zhongmai 175 (soft wheat) and Zhongyou 206 (hard wheat) were used as samples to develop an optimal procedure for extraction and separation of carotenoids compositions extracted from flours using ultra performance liquid chromatography (UPLC). The most effective extraction of carotenoids extraction was obtained using the solvent system of N-hexane; acetone of 80:20 (v/v, 0.1% BHT w/v) under the oscillation condition of 300 rpm, 35ºC, and 1 h. The separation was conducted using YMC C30 Carotenoid column (100.0 mm × 4.6 mm, 3 µm) with photodiode array (PDA) detector, and the column was thermostated at 35°C. Under a gradient system consisting of acetonitrile: methanol: water: triethylamine (81:14:5:0.05, v/v/v/v) (A) and methanol: ethylacetate:triethylamine (68:32:0.05, v/v/v) (B) at a constant flow rate of 0.4 mL min–1, the carotenoids of common wheat flour samples can be well separated in less than 25 min. Carotenoids were detected at 450 nm. All the present results provided useful information for carotenoids compositions and quality improvement.

Key words: Triticum aestivum L., Carotenodis compositions, UPLC

[1]Fawzi W W, Hunter D J. Vitamins in HIV disease progression and vertical transmission. Epidemiology, 1998, 9: 457–466
[2]Ribaya-Mercado J D, Blumberg J B. Lutein and zeaxanthin and their potential roles in disease prevention. J Am Coll Nut, 2004, 23: 567S–587S
[3]Nishino H, Murakoshi M, Tokuda H, Yoshiko S. Cancer prevention by carotenoids. Arch Biochem Biophys, 2009, 483: 165–168
[4]Harjes C E, Rocheford T R, Bai L, Brutnell T P, Kandianis C B, Sowinski S G, Stapleton A E, Vallabhaneni R, Williams M, Wurtzel E T, Yan J B, Buckler E S. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 2008, 319: 330–333
[5]Cazzonelli C I, Pogson B J. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci, 2010, 15: 266–274
[6]Howitt C A, Pogson B J. Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ, 2006, 29: 435–445
[7]Matthews P D, Luo R B, Wurtzel E T. Maize phytoene desaturase and zeta-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Bot, 2003, 54: 2215–2230
[8]Singh M, Lewis P E, Hardeman K, Bai L, Rose J K C, Mazourek M, Chomet P, Brutnell T P. Activator mutagenesis of the pink scutellum1/viviparous7 locus of maize. Plant Cell, 2003, 15: 874–884
[9]Gallagher C E, Matthews P D, Li F Q, Wurtzel E T. Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol, 2004, 135:1776–1783
[10]Li F, Murillo C, Wurtzel E T. Maize Y9 encodes a product essential for 15-cis-ζ-carotene isomerization. Plant Physiol, 2007, 144: 1181–1189
[11]Wong J C, Lambert R J, Wurtzel E T, Rocheford T R. QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize. Theor Appl Genet, 2004, 108: 349–359
[12]Chander S, Guo Y, Yang X, Zhang J, Lu X, Yan J, Song T, Rocheford T, Li J. Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor Appl Genet, 2008, 116: 223–233
[13]Ye X D, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 2000, 287: 303–305
[14]Beyer P, Al-Babili S, Ye X D, Lucca P, Schaub P, Welsch R, Potrykus I. Golden rice: Introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr, 2002, 132: 506S–510S
[15]Paine J A, Shipton C A, Chaggar S, Howells R M, Kennedy M J, Vernon G, Wright S Y, Hinchliffe E, Adams J L, Silverstone A L, Drake R. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol, 2005, 23: 482–487
[16]Gupta P K, Mir R R, Mohan A, Kumar J. Wheat genomics: present status and future prospects. Int J Plant Genomics, 2008, doi: 10.1155/2008/896451
[17]Jin H, Zhang Y, Li G Y, Mu P Y, Fan Z R, Xia X C, He Z H. Effects of allelic variation of HMW-GS and LMW-GS on mixograph properties and Chinese noodle and steamed bread qualities in a set of Aroona near-isogenic wheat lines. J Cereal Sci, 2013, 57: 146–152
[18]Mares D J, Campbell A. Mapping components of flour and noodle colour in Australian wheat. Aust J Agr Res, 2001, 52: 1297–1310
[19]何中虎, 晏月明, 庄巧生, 张艳, 夏先春, 张勇, 王德森, 夏兰芹, 胡英考, 蔡民华, 陈新民, 阎俊, 周阳. 中国小麦品种品质评价体系建立与分子改良技术研究. 中国农业科学 2006, 39: 1091–1101
He Z H, Yan Y M, Zhuang Q S, Zhang Y, Xia X C, Zhang Y, Wang D S, Xia L Q, Hu Y K, Cai M H, Chen X M, Yan J, Zhou Y. Establishment of quality evaluation system and utilization of molecular methods for the improvement of Chinese wheat quality. Sci Agric Sin, 2006, 39: 1091–1101 (in Chinese with English abstract)
[20]Symons S J, Dexter J E. Computer analysis of fluorescence for the measurement of flour refinement as determined by flour ash content, flour grade colour, and tristimulus colour measurements. Cereal Chem, 1991, 68: 454–460
[21]He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet, 2008, 116: 213–221
[22]Dong C H, Ma Z Y, Xia X C, Zhang L P, He Z H. Allelic variation at the TaZds-A1 locus on wheat chromosome 2A and development of a functional marker in common wheat. J Integr Agric 2012, 11: 1067–1074
[23]Abdel-Aal E S M, Young J C, Wood P J, Rabalski I, Hucl P, Fregeau-Reid J. Einkorn: A potential candidate for developing high lutein wheat. Cereal Chem, 2002, 79: 455–457
[24]Adom K K, Sorrells M E, Liu R H. Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem, 2003, 51: 7825–7834
[25]Hung P V, Hatcher D W. Ultra-performance liquid chromatography (UPLC) quantification of carotenoids in durum wheat: Influence of genotype and environment in relation to the colour of yellow alkaline noodles (YAN). Food Chem, 2011, 125: 1510–1516
[26]周毅, 付志远, 李青, 徐淑兔, Chander Subhash, 杨小红, 李建生, 严建兵. 高油和普通玉米自交系类胡萝卜素和生育酚含量的比较. 作物学报, 2009, 35: 2073–2084
Zhou Y, Fu Z Y, Li Q, Xu S T, Chander S, Yang X H, Li J S, Yan J B. Comparative analysis of carotenoid and tocopherol compositions in high-oil and normal Maize (Zea mays L.) inbreds. Acta Agron Sin, 2009, 35: 2073–2084 (in Chinese with English abstract)
[27]Digesù A, Platani C, Cattivelli L, Mangini G, Blanco A. Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats. J Cereal Sci, 2009, 50: 210–218
[28]Hidalgo A, Brandolini A, Pompei C, Piscozzi R. Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). J Cereal Sci, 2006, 44: 182–193
[29]Ndolo V U, Beta T. Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels. Food Chem, 2013, 139: 663–671
[30]Burkhardt S, Böhm V. Development of a new method for the complete extraction of carotenoids from cereals with special reference to durum wheat (Triticum durum Desf.). J Agric Food Chem, 2007, 55: 8295–8301
[31]Oliver J, Palou A, Pons A. Semi-quantification of carotenoids by high-performance liquid chromatography: saponification-induced losses in fatty foods. J Chromatogr A, 1998, 829: 393–399
[32]Konopka I, Czaplicki S, Rotkiewicz D. Differences in content and composition of free lipids and carotenoids in flour of spring and winter wheat cultivated in Poland. Food Chem, 2006, 95: 290–300
[33]Abdel-Aal El-SM, Young J C, Rabalski I, Hucl P, Fregeau-Reid J. Identification and quantification of seed carotenoids in selected wheat species. J Agric Food Chem, 2007, 55: 787–794
[34]Mashaba C S, Barros E. Screening South African potato, tomato, and wheat cultivars for five carotenoids. SAf J Sci, 2011, 107: 34–39
[35]Lookhart G L, Bean S R, Bietz J A. Reversed-phase high performance liquid chromatography in grain applications. Cereal Food World, 2002, 48: 9–16
[36]Kean E G, Hamaker B R, Ferruzzi M G. Carotenoid bioaccessibility from whole grain and degermed maize meal products. J Agric Food Chem, 2008, 56: 9918–9926

[1] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[2] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[3] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[4] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[5] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705.
[6] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267.
[7] 肖永贵,Susanne DREISIGACKER,Claudia NU?EZ-RíOS,胡卫国,夏先春,何中虎. 基于FLUOstar平台的小麦dsDNA荧光定量与基因型分析[J]. 作物学报, 2017, 43(07): 947-953.
[8] 董雪,刘梦,赵献林,冯玉梅,杨燕. 普通小麦近缘种低分子量麦谷蛋白亚基Glu-A3基因的分离和鉴定[J]. 作物学报, 2017, 43(06): 829-838.
[9] 刘凯,邓志英,张莹,王芳芳,刘佟佟,李青芳,邵文,赵宾,田纪春*,陈建省*. 小麦茎秆断裂强度相关性状QTL的连锁和关联分析[J]. 作物学报, 2017, 43(04): 483-495.
[10] 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500.
[11] 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142.
[12] 孔欣欣,张艳,赵德辉,夏先春,王春平,何中虎. 北方冬麦区新育成优质小麦品种面条品质相关性状分析[J]. 作物学报, 2016, 42(08): 1143-1159.
[13] 刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春*,陈建省*. 利用高密度SNP 遗传图谱定位小麦穗部性状基因[J]. 作物学报, 2016, 42(06): 820-831.
[14] 岳爱琴,李昂,毛新国,昌小平,柳玉平,李润植,景蕊莲. 小麦果聚糖合成酶基因6-SFT-D多态性及其与6-SFT-A2的累加效应[J]. 作物学报, 2016, 42(01): 11-18.
[15] 赵德辉,阎俊,黄玉莲,夏先春,张艳,田宇兵,何中虎,张勇. 1BL/1RS易位对小麦贮藏蛋白组分含量和面团流变学特性的影响[J]. 作物学报, 2015, 41(11): 1648-1656.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!