欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (05): 714-724.doi: 10.3724/SP.J.1006.2016.00714

• 耕作栽培·生理生化 • 上一篇    下一篇

可溶性寡糖和小分子的热激蛋白与杂交水稻种子成熟过程中发芽能力及种子活力相关

朱丽伟1,2,**,曹栋栋3,**,付玉营1,胡琦娟1,利站1,关亚静1,胡伟民1,胡晋1,*   

  1. 1浙江大学农业与生物技术学院种子科学中心,浙江杭州310058;2贵州师范大学荞麦产业技术研究中心,贵州贵阳550001;3浙江农科种业有限公司,浙江杭州310058
  • 收稿日期:2015-08-14 修回日期:2016-03-02 出版日期:2016-05-12 网络出版日期:2016-03-11
  • 通讯作者: 胡晋, E-mail: jhu@zju.edu.cn**同等贡献(Contributed equally to this work)
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项(201203052), 浙江省科技厅项目(2013C02005, 2013C32023), 浙江省自然科学基金项目(LZ14C130002, LY15C130002)和江苏省现代作物生产协同创新中心项目资助。

Soluble Oligosaccharide and Small Heat Shock Protein Correlated with Seed Germination and Vigor during Hybrid Rice Seed Maturation

ZHU Li-Wei1,2,**,CAO Dong-Dong3,**,FU Yu-Ying1,HU Qi-Juan1,LI Zhan1,GUAN Ya-Jing1,HU Wei-Min1,HU Jin1,*   

  1. 1Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; 2Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China; 3Zhejiang Agriculture Science Limited Company, Hangzhou310058, China
  • Received:2015-08-14 Revised:2016-03-02 Published:2016-05-12 Published online:2016-03-11
  • Contact: Hu Jin, E-mail: jhu@zju.edu.cn**同等贡献(Contributed equally to this work)
  • Supported by:

    This study was supported by the China Special Fund for Agro-Scientific Research in the Public Interest (201203052), the Subject Fund of ZhejiangProvince Science and Technology Hall (2013C02005, 2013C32023), the Natural Sciences Fund of ZhejiangProvince (LZ14C130002, LY15C130002), and JiangsuCollaborative Innovation Center for Modern Crop Production.

摘要:

系统研究了不同成熟期Y两优689杂交水稻种子的活力、可溶性寡糖含量和小分子热激蛋白表达量的变化。运用模糊隶属函数法综合分析种子的发芽率、发芽势、发芽指数、活力指数、平均发芽时间、根数、根长、苗高、苗重发现,授粉后19~34d的种子生活力与活力均较高。种子成熟过程中含水量呈下降趋势,授粉后10~22 d,种子含水量从48.2%下降至23.9%;鲜种子棉子糖与果糖含量分别呈上升和下降趋势;水苏糖和葡萄糖呈先上升后下降趋势。授粉后10~19 d,小分子热激蛋白64SHsp18.0Os03g0267200基因的表达量均呈上升趋势,此后相对表达量下降。水分、棉子糖、水苏糖和蔗糖等物质含量,鲜种子及干种子的千粒重,以及64SHsp18.0Os03g0267200基因的相对表达量均与种子发芽密切相关。

关键词: 杂交水稻, 种子, 成熟, 小热激蛋白, 寡糖, 活力

Abstract:

To study the relationship between seed soluble oligosaccharide, small heat shock protein (sHSPs) and seed vigor, we systematically studied their changes during hybrid rice seed maturity.The mean fuzzy subordinate function values of germination percentage, germination energy, germination index, vigor index and mean germination time, root number, root length, shoot length and seedling weight were analyzed. The resultsindicated thatseeds harvesting at 19 to 34 days after pollination (DAP) had a higher viability and vigor. The seed moisture content had a decline trend, with a decrease from 48.2% at 10 DAP to 23.9% at 22 DAP. The raffinose content increased significantly, the fructose content kept decreasing, the contents of stachyose and glucose significantly increased firstly and then decreased during seed development. The relative expression levels of 64SHsp18.0 and Os03g0267200 genes increased significantly from 10 to 19 DAP, and then decreased. The moisture content,the contents of raffinose,stachyose andsucrose, thousand seed weight of fresh seeds and dry seeds,relative transcriptions of 64SHsp18.0 and Os03g0267200 genes were all significantly correlated with seed germination during seed maturity.

Key words: Hybrid rice, Seed, Maturity, sHSPs, Oligosaccharide, Vigor

[1]王仁祥, 曹文亮, 肖层林, 谢建华. 株1 S杂交组合制种不同收获期种子贮藏特性研究. 种子, 2008, 27(12): 101–104
Wang R X, Cao W L, Xiao C L, Xie J H. Study on seed storage in different harvesting dates of Zhu 1 S hybrid rice combinations. Seed, 2008, 27(12): 101–104(in Chinese)
[2]周建明, 林一波, 何建华, 沈雪林, 戴华军, 吴锡清. 不同收获期和贮藏时间对杂交粳稻种子活力的影响. 种子, 2010, 29(10): 98–101
 Zhou J M, Lin Y B, He J H, Shen X L, Dai H J, Wu X Q. Effects of different harvest date and storage time on seed vigor of hybrid japonica. Seed, 2010, 29(10): 98–101 (in Chinese)
[3]Fussell L K, Pearson C J. Effects of grain development and thermal history on grain maturation and seed vigour of Pennisetumamericanum. J Exp Bot, 1980, 31: 635–643
[4]Cao DD, Hu J, Huang XX, Wang XJ, Guan YJ, Wang ZF. Relationships between changes of kernel nutritive components and seed vigor during development stages of F1 seeds of sh2sweet corn. J Zhejiang Univ-Sci B, 2008, 9: 964–968
[5]孟庆立, 关周博, 冯佰利, 柴岩, 胡银岗. 谷子抗旱相关性状的主成分与模糊聚类分析. 中国农业科学, 2009, 42: 2667–2675
Meng Q L, Guan Z B, Feng B L, Chai Y, Hu Y G. Principal component analysis and fuzzy clustering on drought-tolerance related traits of foxtail millet (Setariaitalica). SciAgricSin,2009, 42: 2667–2675 (in Chinese with English abstract)
[6]黄先晖, 杨远柱, 姜孝成. 水稻种子脱水耐性的形成及其与贮藏特性的关系. 种子, 2010, 29(7): 25–29
Huang X H, Yang Y Z, Jiang X C. Studies on the formation of desiccation tolerance and the correlation with storage of Oryza sativa L. seeds. Seed, 2010, 29(7): 25–29(in Chinese with English abstract)
[7]Harrington JF. Seed storage and longevity. In: Kozlowski TT, eds. Seed Biology. New York: Academic Press, 1972. pp 145–245
[8]Eskandari H. Seed quality changes in cowpea (Vignasinensis) during seed development and maturation. Seed SciTechnol, 2012, 40: 108–112
[9]Demir I, Samit Y. Seed quality in relation to fruit maturation and seed dry weight during development in tomato. Seed SciTechnol, 2001, 29: 453–462
[10]Demir I, Mavi K, Oztokat C. Changes in germination and potential longevity of watermelon (Citrulluslanatus) seeds during development. New Zeal J Crop Hortic, 2004, 32: 139–145
[11]Blackman S A, Obendorf R L, Leopold A C. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiol, 1992, 100: 225–230
[12]Gorecki R J, Lahuta L B, Jones A D, Hedley C L. Soluble sugar in maturing pea seeds of different lines in relation to desiccation tolerance. In: Black M, Bradford K J, Vazquezramos J,eds. Seed Biology: Advances and Applications.Proceedings of the Sixth International Workshop on Seeds.Merida, Mexico, 1999. CABI,2000. pp 67–74
[13]Baud S, Boutin J P, Miquel M, Lepiniec L, Rochat C.An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant PhysiolBiochem, 2002, 40: 151–160
[14]Wehmeyer N, Vierling E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol, 2000, 122: 1099–1108
[15]Neta-sharir I, Isaacson T, Lurie S, Weiss D. Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell, 2005, 17: 1829–1838
[16]Sarkar N K, Kim YK, Grover A. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics, 2009, 10: 393
[17]Zou J, Liu C F, Liu A L, Zou D, Chen X B. Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol, 2012, 169: 628–635
[18]Chauhan H, Khurana N, Agarwal P, Khurana P. Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol Genet Genomics, 2011, 286: 171–187
[19]Tian Y X, Li Z, He F, Guan Y J, Zhu S J, Hu J. A novel anti-counterfeiting methods: application and decomposition of RB for broad bean seeds(Vicia faba L.). Ind Crop Prod, 2014, 61: 278–283
[20]Bailly C, Audigier C, Ladonne F, Ladonne F, Wagner M H, Coste F, Corbineau F, CômeD. Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality.J Exp Bot, 2001, 52: 701–708
[21]Zheng Y Y. Hu J, Xu S C, Guan Y J, Wang X J. Relationship between polyamine changes in embryos of maize and seed imbibitional chilling tolerance. Seed Sci Technol, 2009, 37: 59–69
[22]刘信. 水稻种子耐干性机理和超干种子贮藏稳定性的研究.浙江大学硕士学位论文, 2003
Liu X. Studies on the Mechanism of Ultra-drying Tolerance of Rice Seed and Storage Stability of Ultra-dried Seed. MS Thesis of Zhejiang University, Hangzhou, China, 2003(in Chinese)
[23]肖层林, 刘爱民, 张海清, 肖晓, 余雪晴. 中国杂交水稻制种技术的进步与发展方向.杂交水稻, 2010, (增刊1): 46–50
Xiao C L, Liu A M, Zhang H Q, Xiao X, Yu X Q. Progress and developing direction of hybrid rice seed production technology in china. Hybrid Rice, 2010, (suppl-1): 46–50(in Chinese)
[24]王业文, 张莹, 靳西彪,魏毅, 朱建清. 抗穗萌药剂组合的筛选及其抑制种子发芽的同功酶电泳研究. 种子,2008, 27(8): 18–21
Wang Y W, Zhang Y, Jin X B, Wei Y, Zhu J Q. The selection of inhibitor combination to inhibit pre-harvest sprouting in rice and study on eletrophoretic analysis. Seed, 2008, 27(8): 18–21 (in Chinese with English abstract)
[25]朱丽伟.杂交水稻种子成熟过程活力、生理生化和耐藏力的变化及脱水剂应用效果的研究. 浙江大学博士学位论文, 2015
Zhu L W. Changes of Vigor, Physiology, Biochemistry and Storability during Hybrid Rice Seed Maturity and theEffect of Dehydrating Agent Application. Ph.D.Dissertationof Zhejiang University, Hangzhou, China, 2015 (in Chinese with English abstract)
[26]樊廷录, 王淑英, 王建华, 杨珍. 河西制种基地玉米杂交种种子成熟期与种子活力的关系. 中国农业科学, 2014, 47: 2960–2970
Fan T L, Wang S Y, Wang J H, Yang Z. Relationship of days after pollination and vigor traits on maize seed maturity in Hexi seed production area in China.SciAgricSin,2014,47: 2960–2970 (in Chinese with English abstract)
[27]Steadman KJ, Pritchard HW, Dey PM. Tissue-specific soluble sugars in seeds as indicators of storage category. Ann Bot-London, 1996, 77: 667–674
[28]Obendorf RL. Oligosaccharides and galactosyls in seed desiccation tolerance. Seed Sci Res, 1997, 7:63–74
[29]Heim U, Weber H, Baumlein H, Wobus U. A sucrose synthase gene of ViciafabaL. expression pattern in developing seeds in relation to starch synthesis and metabolic regulation. Planta, 1993, 191: 394–401
[30]Abid G, Muhovski Y, Jacquemin JM, Mingeot D, Sassi K, Toussaint A, Baudoin J. Characterization and expression profile analysis of a sucrose synthase gene from common bean (Phaseolus vulgaris L.) during seed development. MolBiol Rep, 2012, 39: 1133–1143
[31]Ruan YL, Liewellyn DJ, Liu Q, Xu SM, Wu LM, Wang L, Furbank RT. Expression of sucrose synthase in the developing endosperm is essential for early seed development in cotton. Funct Plant Biol, 2008, 35: 382–393
[32]Angeles-Núñez JG, Tiessen A. Mutation of the transcription factor LEAFY COTYLEDON 2 alters the chemical composition of Arabidopsis seeds, decreasing oil and protein content, while maintaining high levels of starch and sucrose in mature seeds. J Plant Physiol, 2011, 168: 1891–1900
[33]陶月良, 朱诚. 顽拗性板栗种子成熟前后褐变与可溶性糖的关系. 农业工程学报, 2003, 19(4): 201–204
    Tao Y L, Zhu C. Relationship between browning and soluble sugar of recalcitrant seeds of chestnut in front of and behind maturation. Trans CSAE, 2003, 19(4): 201–204(in Chinese with English abstract)
[34]Obendorf RL, Zimmerman AD, Zhang QY, Castillo A, Kosina SM, Bryant EG, Sensenig EM, Wu J, Schnebly SR. Accumulation of soluble carbohydrates during seed development and maturation of low-raffinose, low-stachyose soybean.Crop Sci,2009, 49: 329–341
[35]李永红, 马颖敏, 许柏球, 赵梁军. 巴拿马栗种子发育中可溶性糖变化与种子脱水耐性的关系.中国农业科学, 2009, 42: 2882–2891
Li Y H, Ma Y M, Xu B Q, Zhao L J. Relationship between dehydration tolerance and soluble sugars duringseed development of Pachiramacrocarpa. SciAgricSin, 2009, 42: 2882-2891(in Chinese with English abstract)
[36]Sheila AB, Ralph LO, Leopold AC. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiol,1992, 100: 225–230
[37]Lehner A, Bailly C, Flechel B, Poels P, Côme D, Corbineau F. Changes in wheat seed germination ability, soluble carbohydrate and antioxidant enzymes activities in the embryo during the desiccation phase of maturation. J Cereal Sci,2006, 43: 175–182
[38]Koster KL, Leopold AC. Sugars and desiccation tolerance in seeds. Plant Physiol, 1988, 88: 829–832
[39]Crowe JH, Hoekstra FA, Crowe LM. Anhydrobiosis. Annu Rev, 1992, 54: 579–599
[40]Lin S K, Chang M C, Tsai Y G, Lur H S.Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics, 2005, 5:2140–2156
[41]郭鹏, 隋娜, 于超, 郭尚敬, 董新纯, 孟庆伟. 转入甜椒热激蛋白基因CaHSP18提高番茄的耐冷性. 植物生理学通讯, 2008, 44: 409–412
Guo P, Sui N, Yu C, Guo S J, Dong X C, Meng Q W. CaHSP18.0 of sweet pepper enhanced chilling tolerance of transgenic tomato plants. Plant PhysiolCommun, 2008, 44: 409–412 (in Chinese with English abstract)

[1] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[2] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[3] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[4] 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107.
[5] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[6] 邱红梅, 陈亮, 侯云龙, 王新风, 陈健, 马晓萍, 崔正果, 张玲, 胡金海, 王跃强, 邱丽娟. 大豆种子颜色遗传调控机制研究进展[J]. 作物学报, 2021, 47(12): 2299-2313.
[7] 孟鑫浩, 张靖男, 崔顺立, Charles Y.Chen, 穆国俊, 侯名语, 杨鑫雷, 刘立峰. 花生荚果与种子相关性状QTL定位及与环境互作分析[J]. 作物学报, 2021, 47(10): 1874-1890.
[8] 鲁庚,唐鑫,陆俊杏,李丹,胡秋芸,胡田,张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究[J]. 作物学报, 2020, 46(8): 1283-1290.
[9] 郭学民,赵晓曼,徐珂,王芯蕊,张辰瑜,东方阳. 蓖麻种子结构的解剖和显微观察[J]. 作物学报, 2020, 46(6): 914-923.
[10] 张双双,王立伟,姚楠,郭光艳,夏玉凤,秘彩莉. 水稻OsUBA基因的表达及其在促进种子萌发和开花中的功能[J]. 作物学报, 2019, 45(9): 1327-1337.
[11] 向丽媛,徐凯,苏静,吴超,袁雄,郑兴飞,刁英,胡中立,李兰芝. 基于通路分析剖析水稻农艺性状配合力和杂种优势[J]. 作物学报, 2019, 45(9): 1319-1326.
[12] 宋松泉,刘军,徐恒恒,张琪,黄荟,伍贤进. 乙烯的生物合成与信号及其对种子萌发和休眠的调控[J]. 作物学报, 2019, 45(7): 969-981.
[13] 申状状,李昱樱,荣二花,吴玉香. 陆地棉和野生斯特提棉种间异源六倍体的合成与性状鉴定[J]. 作物学报, 2019, 45(4): 628-634.
[14] 张宇婷,鲁少平,金诚,郭亮. 甘蓝型油菜皖油20号种子不同部位油脂合成的转录调控分析[J]. 作物学报, 2019, 45(3): 381-389.
[15] 严青青,张巨松,李星星,王燕提. 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响[J]. 作物学报, 2019, 45(1): 100-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!