作物学报 ›› 2016, Vol. 42 ›› Issue (10): 1471-1478.doi: 10.3724/SP.J.1006.2016.01471
刘睿洋,刘芳,张振乾,官春云
LIU Rui-Yang,LIU Fang,ZHANG Zhen-Qian,GUAN Chun-Yun
摘要:
富含油酸的菜籽油具有重要的经济价值,使得高油酸育种和形成机理的研究成为热点。油酸脱氢酶基因(FAD2基因)是控制油酸含量的关键酶基因。本文针对BnFAD2-C5基因展开研究,根据油菜和甘蓝的同源性,克隆了1257 bp启动子序列,利用GUS和GFP作为报告基因分别构建含有不同片段长度的启动子和内含子的缺失载体并转化拟南芥,经GUS染色检测发现–319 ~ –1 bp为该研究中最小启动子;采用Western技术分析启动子和内含子不同区域的功能,发现BnFAD2-C5启动子区域–1257 ~ –1020 bp和–319 ~ –1 bp能够诱导报告基因在转基因拟南芥种子发育中期高效表达,BnFAD2-C5内含子具有增强启动子转录水平的功能,该功能主要由631~1033 bp区域调控。
[1] Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.). Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000, 263: 796–805 [2] Terés S, Barceló-Coblijn G, Benet M, Alvarez R, Bressani R, Halver J E, EscribáP V. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci USA, 2008, 105: 13811–13816 [3] Wijesundera C, Ceccato C, Fagan P, Shen Z, Burton W, Salisbury P. Canola quality Indian mustard oil (Brassica juncea) is more stable to oxidation than conventional Canola oil (Brassica napus). Am J Clin Nutr, 2008, 85:693–699 [4] Tang G Q, Novitzky W P, Carol Griffin H. Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant J, 2005, 44: 433–446 [5] Rojas-Barros P, de Haro A, Fernandez-Martinez J M. Inheritance of high oleic/low ricinoleic acid content in the seed oil of castor mutant OLE-1. Cropence, 2005, 45: 157–162 [6] Nabloussi A, Fernandez-Martinez J M, Velasco L. Inheritance of mid and high oleic acid content in Ethiopian mustard. Cropence, 2006, 46: 2361–2367 [7] 官春云, 刘春林, 陈社员, 彭琦, 李栒, 官梅. 辐射育种获得油菜(Brassica anpus)高油酸材料. 作物学报, 2006, 32: 1625–1629 Guan C Y, Liu C L, Chen S Y, Peng Q, Li X, Guan M. High oleic acid content materials of rapeseed (Brassica napus) produced by radiation breeding. Acta Agron Sin, 2006, 32: 1625–1629 [8] 和江明, 王敬乔, 陈薇, 李根泽, 董云松, 寸守铣. 用EMS诱变和小孢子培养快速获得甘蓝型油菜高油酸种质材料的研究. 西南农业学报, 2003, 16(2): 34–36 He J M, Wang J Q, Chen W, Li G Z, Dong Y S, Cun S X. Studies on rapidly obtaining high oleic acid germplasm of Brassica napus by mutagen EMS and microspore culture. Southwest China J Agric Sci, 2003, 16(2): 34–36 [9] Hu X, Sullivan-Gilbert M, Gupta M, Thompson S A. Mapping of the loci controlling oleic and linolenic acid contents and development of fad 2andfad 3 allele-speci fic markers in canola (Brassica napus L.). Theor Appl Genet, 2006, 113: 497–507 [10] Stoutjesdijk P A, Hurlestone C, Singh S P, Green A G. High-oleic acid Australian Brassica napus and B. juncea varieties produced by co-suppression of endogenous D12-desaturases. Biochem Soc T, 2000, 28: 938–940 [11] Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Rep, 2010, 29: 317–325 [12] Kim M J, Kim H, Shin J S, Chung C H, Ohlrogge J B, Suh M C. Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′-UTR intron. Mol Genet Genom, 2006, 276: 351–368 [13] Xiao G, Zhang Z Q, Yin C F, Liu R Y, Wu X M, Tan T L, Chen S Y, Lu C M, Guan C Y. Characterization of the promoter and 5′-UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus. Gene, 2014, 545: 45–55 [14] 刘芳, 刘睿洋, 彭烨, 官春云. 甘蓝型油菜BnFAD2-C1 基因全长序列的克隆, 表达及转录调控元件分析. 作物学报, 2015, 41: 1663–1670 Liu F, Liu R Y, Peng Y, Guan C Y. Cloning and expression of BnFAD2-C1 gene involved in Brassica napus and analysis of transcription regulation elements. Acta Agron Sin, 2015, 41: 1663–1670 [15] Jefferson R A, Kavanagh T A, Bevan M W. GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987, 6: 3901–3907 [16] Heppard E P, Kinney A J, Stecca K L, Miao G H. Developmental and growth temperature regulation of two different microsomal [omega]-6 desaturase genes in soybeans. Plant Physiol, 1996, 110: 311–319 [17] Pirtle I L, Kongcharoensuntorn W, Nampaisansuk M, Knesek J E, Chapman K D, Pirtle R M. Molecular cloning and functional expression of the gene for a cotton Δ-12 fatty acid desaturase (FAD2). BBA-Gene Struc Expr, 2001, 1522: 122–129 [18] Mascarenhas D, Mettler I J, Pierce D A, Lowe H W. Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol, 1990, 15: 913–920 [19] Chung B Y, Simons C, Firth A E, Brown C M, Hellens R P. Effect of 5'UTR introns on gene expression in Arabidopsis thaliana. BMC Genom, 2006, 7: 120 [20] Parra G, Bradnam K, Rose A B, Korf I. Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucl Acids Res, 2011, 39: 5328–5337 [21] Carola M, Finer J J. The intron and 5′ distal region of the soybean Gmubi promoter contribute to very high levels of gene expression in transiently and stably transformed tissues. Plant Cell Rep, 2015, 34: 111–120 [22] Rose A B. Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA, 2002, 8: 1444–1453 [23] Stålberg K, Ellerstöm M, Ezcurra I, Ablov S, Rask L. Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta, 1996, 199: 515–519 [24] Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5: 199–206 [25] Park H C, Kim M L, Kang Y H, Jeon J M, Yoo J H, Kim M C, Yoon H W. Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol, 2004, 135: 2150–2161 [26] Andreasson E, Taipalensuu J, Rask L, Meijer J. Age-dependent wound induction of a myrosinase-associated protein from oilseed rape (Brassica napus). Plant Mol Biol, 1999, 41: 171–180 [27] Yanagisawa S. Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J, 2000, 21: 281–288 [28] Rouster J, Leah R, Mundy J, Cameron-Mills V. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J, 1997, 11: 513–523 [29] Lam E, Chua N H. ASF-2: a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell, 1989, 1: 1147–1156 [30] Kusnetsov V, Landsberger M, Meurer J. The assembly of the CAAT-box binding complex at a photosynthesis gene promoter is regulated by light, cytokinin, and the stage of the plastids. J Biol Chem, 1999, 274: 36009–36011 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[4] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[5] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[6] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[7] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[8] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[9] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[10] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[11] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[12] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[13] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
[14] | 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471. |
[15] | 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223. |
|