[1]Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J, 1996, 9: 195–203
[2]Hirsch R E, Lewis B D, Spalding E P, Sussman M R. A role for the AKT1 potassium channel in plant. Nutr Sci, 1998, 280: 918–921
[3]Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle H H, Hedrich R. K+ channel profile and electrical properties of Arabidopsis root hairs. Febs Lett, 2001, 508: 463–469
[4]Véry A A, Sentenac H. Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol, 2003, 54: 575–603
[5]Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37: 1141–1146
[6]于志晶, 蔡勤安, 刘艳芝, 齐广勋, 马瑞, 董英山. Na+转运蛋白SKC1基因转化大豆的研究. 吉林农业科学, 2014, 39(1): 1–5
Yu Z J, Cai Q A, Liu Y Z, Qi G X, Ma R, Dong Y S. Genetic transformation of Na+ transporter gene SbSKC1 into soybean mediated with Agrobacterium. Jilin Acad Agri Sci, 2014, 39(1): 1–5 (in Chinese with English abstract)
[7]Hassanein A. Salt tolerance of fifty grain sorghum genotypes at seedling stage [Egypt]. J Agri Sci (Egypt), 1985, 30: 163–176
[8]Azhar F, Mcneilly T. Variability for salt tolerance in Sorghum bicolor (L.) Moench. under hydroponic conditions. J Agron Crop Sci, 1987, 159: 269–277
[9]Azhar F, Mcneilly T. The genetic basis of variation for salt tolerance in Sorghum bicolor (L.) Moench seedlings. Plant Breed, 1988, 101: 114–121
[10]Maiti R, De La Rosa-Ibarra M, Sandoval N D. Genotypic variability in glossy sorghum lines for resistance to drought, salinity and temperature stress at the seedling stage. J Plant Physiol, 1994, 143: 241–244
[11]韩玉翠, 叶凯, 侯升林, 涂振东, 吕芃, 杜瑞恒, 刘国庆. 高粱耐盐分子生物学研究进展. 中国农业科技导报, 2014, 16: 65–70
Han Y C, Ye K, Hou S L, Tu Z D, Lyu P, Du R H, Liu G Q. Progress on molecular biology of salinity tolerancein sorghum. J Agric Sci and Technol, 2014, 16: 65–70 (in Chinese with English abstract)
[12]王宝山, 邹琦, 赵可夫. 高粱不同器官生长对NaCl胁迫的响应及其耐盐阈值. 西北植物学报, 1997, 17: 279–285
[13]Wang B S, Zou Q, Zhao K F. Response of different organ grovth of sorghum to NaCl stress and the threshhold salinity. Acta Bot Boreali-Occident Sin, 1997, 17: 279–285 (in Chinese with English abstract)
[14]Almodares A, Hadi M, Dosti B. Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. J Biol Sci, 2007, 7: 1492–1495
[15]王明珍, 朱志华, 张晓芳. 中国高粱品种资源耐盐性鉴定初报. 作物品种资源, 1992, 12(2): 28–29
Wang M Z, Zhu Z H, Zhang X F. Preliminary report on salt tolerance identification of Chinese sorghum varieties. Crop Germplasm Resourc, 1992, 12(2): 28–29 (in Chinese)
[16]孙守钧, 刘惠芬, 王云, 张云华, 孙丽华, 李子芳. 高粱-苏丹草杂交种耐盐性的杂种优势研究. 华南农业大学学报, 2004, 25(增刊): 24–27
[17]Sun S J, Liu H F, Wang Y, Zhang Y H, Sun L H, Li Z F. Study on heterosis of salt otleanrce for sorghn-sudangarss hybird. J South China Agric Univ, 2004, 25(suppl): 24–27 (in Chinese with English abstract)
[18]张云华, 孙守均, 王云, 宋桂云, 王翠花, 白金明. 高梁萌发期和苗期耐盐性研究. 内蒙古民族大学学报(自然科学版), 2004, 19: 300–302
Zhang Y H, Sun S J, Wang Y, Song G Y, Wang C H, Bai J M. The studies on salinity tolerance during burgeon- periodand seedling- period of sorghum. J Inner Mongolica Univ Natl (Nat Sci Edn), 2004, 19: 300–302 (in Chinese with English abstract)
[19]韩福光, 赵海岩, 林凤, 杨立国. 高粱幼叶离体培养的衍生系的耐盐筛选与性状分析. 作物学报, 1997, 23: 491–495
Han F G, Zhao H Y, Lin F, Yang L G. Screening for salt (NaCl) tolerant Lines through in vitro cultureunder salt stress conditionand studieson their diffetellt chsrseters. Ata Argon Sin, 1997, 23: 491–495 (in Chinese with English abstract)
[20]谢登雷, 崔江慧, 常金华. 高粱中SbDREB2基因的克隆与表达分析. 作物学报, 2013, 39: 1352–1359
Xie D L, Cui J H, and Chang J H. Cloning and expression analysis of SbDREB2 gene from Sorghum bicolor. Acta Agron Sin, 2013, 39: 1352−1359
[21]Qin L J, Zhao D, Zhao D G. Overexpression of NrCN improved TMV resistance in selection marker-free tobacco generated by gene-deletor system. Plant Mol Biol Rep, 2015, 33: 1619–1633
[22]Wei H, Qian Q Y, Yan W, Rui C, Xiao M D, Jie W, Shi Y Z, Ming J C, Li H C, Chao H. Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant Cell Physiol, 2012, 53: 2127–2141
[23]张志良, 瞿伟菁, 李小芳. 植物生理学实验指导. 北京: 高等教育出版社, 2009. pp 54–58
Zhang Z L, Qu W J, Li X F. Experimental instruction of Plant Physiology. Beijing: Higher Education Press, 2009. pp 54–58 (in Chinese)
[24]吴延寿, 陈春莲, 熊运华, 黄永萍, 周文红, 徐兰香, 尹建华. 植物体内Na/K转运体研究进展. 江西农业学报, 2010, 22(6): 37–41
Wu Y S, Chen C L, Xiong Y H, Huang Y P, Zhou W H, Xu L X, Yin J H. Research progress of Na+/K+ transporters in plants. Acta Agric Jiangxi, 2010, 22(6): 37–41
[25]刘友良, 王良驹. 植物对盐胁迫的反应和耐盐性. 北京: 科学出版社, 1998. pp 752–769
Liu Y L, Wang L J. Responses of Plants to Salt Stress and Salt Tolerance. Beijing: Science Press, 1998. pp 752–769
[26]Surjus A, Durand M. Lipid changes in soybean root membranes in response to salt treatment. J Exp Bot, 1996, 47: 17–23
[27]覃鹏, 刘叶菊, 刘飞虎. 干旱胁迫对烟草叶片丙二醛含量和细胞膜透性的影响. 亚热带植物科学, 2004, 33(4): 8–10
Qin P, Liu Y J, Liu F H. Effects of drought stress on malondiadehyde content and cell membrane permeability in tobacco leaves. Subtropical Plant Sci, 2004, 33(4): 8–10 (in Chinese with English abstract)
[28]Roychoudhury A, Roy C, Sengupta D N. Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep, 2007, 26: 1839–1859
[29]萧蓓蕾, 刘丽霞, 冯建英. 盐胁迫对转ZmPP2C2基因烟草和野生型烟草部分生理生化指标的影响. 安徽农业科学, 2010, 38: 1834–1836
Xiao B L, Liu L X, Feng J Y. Effects of salt stress on some physiological and biochemical indices of transgenic tobacco harboring ZmPP2C2 and wild tobacco. J Anhui Agri Sci, 2010, 38: 1834–1836 (in Chinese with English abstract)
[30]Negi N P, Shrivastava D C, Sharma V, Sarin N B. Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco. Plant Cell Rep, 2015, 34: 1109–1126 |