欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (02): 190-200.doi: 10.3724/SP.J.1006.2017.00190

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

高粱Na+转运蛋白基因SbSKC1的克隆及其在烟草中的抗盐功能鉴定

姚新转1,2,刘洋2,3,*,赵德刚1,2,*   

  1. 1 贵州大学生命科学学院 / 农业生物工程研究院,贵州贵阳 550025;2 贵州大学山地植物资源保护与种质创新省部共建教育部重点实验室,贵州贵阳550025;3 贵州大学烟草学院,贵州贵阳 550025
  • 收稿日期:2016-04-20 修回日期:2016-09-18 出版日期:2017-02-12 网络出版日期:2016-09-29
  • 通讯作者: 刘洋, E-mail: liuyangbun@163.com; 赵德刚, E-mail: dgzhao@gzu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31160149), 贵州省科技厅农业攻关项目(黔科合NZ字[2012]3009号), 国家转基因生物新品种培育重大专项(2014ZX08010-003)资助。

Cloning of Na+ Transporter Protein SbSKC1 Gene from Sorghum and Identification of Its Salt-resistant Function in Tobacco

YAO Xin-Zhuan1,2,LIU Yang2,3,*,ZHAO De-Gang1,2,*   

  1. 1 College of Life Sciences and Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; 2 The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guiyang 550025, China; 3 College of Tobacco Science, Guizhou University, Guiyang 550025, China
  • Received:2016-04-20 Revised:2016-09-18 Published:2017-02-12 Published online:2016-09-29
  • Contact: 刘洋, E-mail: liuyangbun@163.com; 赵德刚, E-mail: dgzhao@gzu.edu.cn
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (31160149), Agricultural science and technology project of Guizhou provincial science and Technology Department (NZ word [2012]3009 in Guizhou), and National new varieties of genetically modified organisms to cultivate a major special (2014ZX08010-003).

摘要:

Na+转运蛋白基因在植物抵御逆境胁迫中起重要作用,本研究克隆高粱了Na+转运蛋白基因SbSKC1,其完整开放阅读框为1497 bp,编码498个氨基酸残基,氨基酸序列比对及进化树分析表明,高粱Na+转运蛋白基因SbSKC1与玉米(Zea mays) LOC100382359 (NP_001162576.1)具有高度相似性。构建pSH-SbSKC1植物表达载体,利用农杆菌介导法将该载体转入烟草(Nicotiana tabacum cv. Xanthi),PCR及抗盐性鉴定结果表明,300 mmol L–1 NaCl处理下,转基因烟草的存活率高于野生型烟草,根长显著高于野生型烟草,同时转基因烟草保持了较高的K+/Na+。盐胁迫后,转基因烟草的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性显著高于野生型,而过氧化氢(H2O2)含量比野生型烟草低37.7%,初步推断过量表达SbSKC1基因能够显著提高烟草的抗盐性。

关键词: 烟草, SbSKC1基因, 抗盐性, 抗氧化性

Abstract:

Na+ transporter proteingene plays an important role in plant in response to abiotic stresses. In this research, SbSKC1, a Na+ transporter gene was cloned from Sorghum bicolor. The full-length open reading frame comprises 1497 bp and encodes 498 amino acids. Multiple sequence alignment and phylogenetic analysis showed that the Na+ transporter gene SbSKC1 in sorghum and maize had a high similarity. The SbSKC1gene was transferred into tobacco (Nicotiana tabacum cv. Xanthi) via Agrobacterium- mediated transformation. The salt tolerance of transgenic tobacco was screened by PCR. Under the 300mmol L-1 NaCl treatment, the survival rate of transgenic tobacco was higher than that of wild type and the root length of transgenic tobacco was significantly higher than that of the wild type. At the same time, transgenic tobacco maintained a higher content of K+/Na+. Under salt stress treatment, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were significantly higher in transgenic tobacco than in the wild type. However, the content of hydrogen peroxide (H2O2) in transgenic tobacco was 37.7% lower than in the wild type tobacco. It’s suggests that overexpression of SbSKC1 gene can significantly improve the salt resistance of tobacco.

Key words: Tobacco, SbSKC1 gene, Salt resistance, Oxidation resistance

[1]Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J, 1996, 9: 195–203
[2]Hirsch R E, Lewis B D, Spalding E P, Sussman M R. A role for the AKT1 potassium channel in plant. Nutr Sci, 1998, 280: 918–921
[3]Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle H H, Hedrich R. K+ channel profile and electrical properties of Arabidopsis root hairs. Febs Lett, 2001, 508: 463–469
[4]Véry A A, Sentenac H. Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol, 2003, 54: 575–603
[5]Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37: 1141–1146
[6]于志晶, 蔡勤安, 刘艳芝, 齐广勋, 马瑞, 董英山. Na+转运蛋白SKC1基因转化大豆的研究. 吉林农业科学, 2014, 39(1): 1–5
Yu Z J, Cai Q A, Liu Y Z, Qi G X, Ma R, Dong Y S. Genetic transformation of Na+ transporter gene SbSKC1 into soybean mediated with Agrobacterium. Jilin Acad Agri Sci, 2014, 39(1): 1–5 (in Chinese with English abstract)
[7]Hassanein A. Salt tolerance of fifty grain sorghum genotypes at seedling stage [Egypt]. J Agri Sci (Egypt), 1985, 30: 163–176
[8]Azhar F, Mcneilly T. Variability for salt tolerance in Sorghum bicolor (L.) Moench. under hydroponic conditions. J Agron Crop Sci, 1987, 159: 269–277
[9]Azhar F, Mcneilly T. The genetic basis of variation for salt tolerance in Sorghum bicolor (L.) Moench seedlings. Plant Breed, 1988, 101: 114–121
[10]Maiti R, De La Rosa-Ibarra M, Sandoval N D. Genotypic variability in glossy sorghum lines for resistance to drought, salinity and temperature stress at the seedling stage. J Plant Physiol, 1994, 143: 241–244
[11]韩玉翠, 叶凯, 侯升林, 涂振东, 吕芃, 杜瑞恒, 刘国庆. 高粱耐盐分子生物学研究进展. 中国农业科技导报, 2014, 16: 65–70
Han Y C, Ye K, Hou S L, Tu Z D, Lyu P, Du R H, Liu G Q. Progress on molecular biology of salinity tolerancein sorghum. J Agric Sci and Technol, 2014, 16: 65–70 (in Chinese with English abstract)
[12]王宝山, 邹琦, 赵可夫. 高粱不同器官生长对NaCl胁迫的响应及其耐盐阈值. 西北植物学报, 1997, 17: 279–285
[13]Wang B S, Zou Q, Zhao K F. Response of different organ grovth of sorghum to NaCl stress and the threshhold salinity. Acta Bot Boreali-Occident Sin, 1997, 17: 279–285 (in Chinese with English abstract)
[14]Almodares A, Hadi M, Dosti B. Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. J Biol Sci, 2007, 7: 1492–1495
[15]王明珍, 朱志华, 张晓芳. 中国高粱品种资源耐盐性鉴定初报. 作物品种资源, 1992, 12(2): 28–29
Wang M Z, Zhu Z H, Zhang X F. Preliminary report on salt tolerance identification of Chinese sorghum varieties. Crop Germplasm Resourc, 1992, 12(2): 28–29 (in Chinese)
[16]孙守钧, 刘惠芬, 王云, 张云华, 孙丽华, 李子芳. 高粱-苏丹草杂交种耐盐性的杂种优势研究. 华南农业大学学报, 2004, 25(增刊): 24–27
[17]Sun S J, Liu H F, Wang Y, Zhang Y H, Sun L H, Li Z F. Study on heterosis of salt otleanrce for sorghn-sudangarss hybird. J South China Agric Univ, 2004, 25(suppl): 24–27 (in Chinese with English abstract)
[18]张云华, 孙守均, 王云, 宋桂云, 王翠花, 白金明. 高梁萌发期和苗期耐盐性研究. 内蒙古民族大学学报(自然科学版), 2004, 19: 300–302
Zhang Y H, Sun S J, Wang Y, Song G Y, Wang C H, Bai J M. The studies on salinity tolerance during burgeon- periodand seedling- period of sorghum. J Inner Mongolica Univ Natl (Nat Sci Edn), 2004, 19: 300–302 (in Chinese with English abstract)
[19]韩福光, 赵海岩, 林凤, 杨立国. 高粱幼叶离体培养的衍生系的耐盐筛选与性状分析. 作物学报, 1997, 23: 491–495
Han F G, Zhao H Y, Lin F, Yang L G. Screening for salt (NaCl) tolerant Lines through in vitro cultureunder salt stress conditionand studieson their diffetellt chsrseters. Ata Argon Sin, 1997, 23: 491–495 (in Chinese with English abstract)
[20]谢登雷, 崔江慧, 常金华. 高粱中SbDREB2基因的克隆与表达分析. 作物学报, 2013, 39: 1352–1359
Xie D L, Cui J H, and Chang J H. Cloning and expression analysis of SbDREB2 gene from Sorghum bicolor. Acta Agron Sin, 2013, 39: 1352−1359
[21]Qin L J, Zhao D, Zhao D G. Overexpression of NrCN improved TMV resistance in selection marker-free tobacco generated by gene-deletor system. Plant Mol Biol Rep, 2015, 33: 1619–1633
[22]Wei H, Qian Q Y, Yan W, Rui C, Xiao M D, Jie W, Shi Y Z, Ming J C, Li H C, Chao H. Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant Cell Physiol, 2012, 53: 2127–2141
[23]张志良, 瞿伟菁, 李小芳. 植物生理学实验指导. 北京: 高等教育出版社, 2009. pp 54–58
Zhang Z L, Qu W J, Li X F. Experimental instruction of Plant Physiology. Beijing: Higher Education Press, 2009. pp 54–58 (in Chinese)
[24]吴延寿, 陈春莲, 熊运华, 黄永萍, 周文红, 徐兰香, 尹建华. 植物体内Na/K转运体研究进展. 江西农业学报, 2010, 22(6): 37–41
Wu Y S, Chen C L, Xiong Y H, Huang Y P, Zhou W H, Xu L X, Yin J H. Research progress of Na+/K+ transporters in plants. Acta Agric Jiangxi, 2010, 22(6): 37–41
[25]刘友良, 王良驹. 植物对盐胁迫的反应和耐盐性. 北京: 科学出版社, 1998. pp 752–769
Liu Y L, Wang L J. Responses of Plants to Salt Stress and Salt Tolerance. Beijing: Science Press, 1998. pp 752–769
[26]Surjus A, Durand M. Lipid changes in soybean root membranes in response to salt treatment. J Exp Bot, 1996, 47: 17–23
[27]覃鹏, 刘叶菊, 刘飞虎. 干旱胁迫对烟草叶片丙二醛含量和细胞膜透性的影响. 亚热带植物科学, 2004, 33(4): 8–10
Qin P, Liu Y J, Liu F H. Effects of drought stress on malondiadehyde content and cell membrane permeability in tobacco leaves. Subtropical Plant Sci, 2004, 33(4): 8–10 (in Chinese with English abstract)
[28]Roychoudhury A, Roy C, Sengupta D N. Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep, 2007, 26: 1839–1859
[29]萧蓓蕾, 刘丽霞, 冯建英. 盐胁迫对转ZmPP2C2基因烟草和野生型烟草部分生理生化指标的影响. 安徽农业科学, 2010, 38: 1834–1836
Xiao B L, Liu L X, Feng J Y. Effects of salt stress on some physiological and biochemical indices of transgenic tobacco harboring ZmPP2C2 and wild tobacco. J Anhui Agri Sci, 2010, 38: 1834–1836 (in Chinese with English abstract)
[30]Negi N P, Shrivastava D C, Sharma V, Sarin N B. Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco. Plant Cell Rep, 2015, 34: 1109–1126

[1] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[2] 董庆园,马德清,杨学,刘勇,黄昌军,袁诚,方敦煌,于海芹,童治军,沈俊儒,许银莲,罗美中,李永平,曾建敏. 高抗黑胫病烤烟BAC文库的构建及分析[J]. 作物学报, 2020, 46(6): 869-877.
[3] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[4] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[5] 甄晓宇,杨坚群,栗鑫鑫,刘兆新,高芳,赵继浩,李颖,钱必长,李金融,杨东清,李向东. 播种深度对花生生育进程和叶片衰老的影响及其生理机制[J]. 作物学报, 2019, 45(9): 1386-1397.
[6] 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418.
[7] 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
[8] 柯丹霞,彭昆鹏,张孟珂,贾妍,王净净. 大豆GmHDL57基因的克隆及抗盐功能鉴定[J]. 作物学报, 2018, 44(9): 1347-1356.
[9] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
[10] 王建伟,贺晓岚,李文旭,陈新宏. 小麦近缘属植物1-FFT基因的克隆及功能分析[J]. 作物学报, 2018, 44(6): 814-823.
[11] 钟思荣,陈仁霄,陶瑶,龚丝雨,何宽信,张启明,张世川,刘齐元. 耐低氮烟草基因型的筛选及氮效率分析[J]. 作物学报, 2017, 43(07): 993-1002.
[12] 赵佩,腾丽杰,王轲,杜丽璞,任贤,佘茂云,叶兴国. 小麦TaVIP1家族基因克隆、分子特性及功能分析[J]. 作物学报, 2017, 43(02): 201-209.
[13] 陶瑶,王瑜,钟思荣,吴凌敏,谢丽娟,聂亚平,周玮,王建革,刘齐元. 烟草ATP合酶F0部分4个亚基基因转录本编辑位点分析[J]. 作物学报, 2016, 42(12): 1743-1753.
[14] 童治军,焦芳婵,方敦煌,陈学军,吴兴富,曾建敏,谢贺,张谊寒,肖炳光*. 烟草染色体片段代换系的构建与遗传评价[J]. 作物学报, 2016, 42(11): 1609-1619.
[15] 贺晓岚,王建伟,李文旭,陈真真,赵继新,武军,王中华,陈新宏. 大赖草6-SFT基因的克隆及其转基因烟草抗旱和抗寒性分析[J]. 作物学报, 2016, 42(03): 389-398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!