[1] Borisjuk N, Hrmova M, Lopato S. Transcriptional regulation of cuticle biosynthesis. Biotechnol Adv, 2014, 32: 526–540
[2] Medrano H, Escalona J, Bota J, Gulias, Flexas J. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot, 2002, 89: 895–905
[3] Chen X, Goodwin S, Liu X, Chen X, Bressan R, Jenks M A. Mutation of the RST1 locus of Arabidopsis reveals an association of cuticular wax with embryo development. Plant Physiol, 2005, 139: 909–919
[4] Zhang J Y, Broeckling C, Blancaflor E, Sledge M K, Summer L W, Wang Z Y. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J, 2005, 42: 689–707
[5] Yeats T, Rose J K C. The formation and function of plant cuticles. Plant Physiol, 2013, 163: 5–20
[6] Lee S B, Suh M C. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep, 2015, 34: 557–572
[7] Bernard A, Joubès J. Arabidopsis cuticular waxes: Advances in synthesis, export and regulation. Prog Lipid Res, 2013, 52: 110–129
[8] Espana L, Heredia-Guerrero J, Reina-Pinto J, Fernandez-Munoz R, Heredia A, Dominguez E. Transient silencing of CHALCONE SYNTHASE during fruit ripening modifies tomato epidermal cells and cuticle properties. Plant Physiol, 2014, 166: 1371–1386
[9] Schreiber L, Skrabs M, Hartmann K, Diamantopoulos P, Simanova E, Santrucek J. Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks. Planta, 2001, 214: 274–282
[10] Gan L, Wang X, Cheng Z, Liu L, Wang J, Zhang Z, Ren Y, Lei C, Zhao Z, Zhu S, Lin Q, Wu F, Guo X, Wang J, Zhang X, Wan J. Wax crystal-sparse leaf 3 encoding a β-ketoacyl-CoA reductase is involved in cuticular wax biosynthesis in rice. Plant Cell Rep, 2016, DOI 10.1007/s00299-016-1983-1
[11] Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Hofte H, Pauly M D, Riechmann J L, Broun P. The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell, 2007, 19: 1278–294
[12] Zhou X Y, Li L Z, Xiang J H, Gao G F, Xu F X, Liu A L, Zhang X W, Zou J, Peng Y, Chen X B, Wan X Y. OsGL1-3 is involved in cuticular wax biosynthesis and tolerance to water deficit in rice. PLoS One, 2015, 10(1): e116676. DOI: 10.1371/journal.pone.0116676
[13] Zhu X, Xiong L. Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice. Proc Natl Acad Sci USA, 2013, 110: 17790–17795
[14] Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23: 1138–1152
[15] Zhou X Y, Jenks M A, Liu J, Liu A L, Zhang X W, Xiang J H, Zou J, Peng Y, Chen X B. Overexpression of transcription factor OsWR2 regulates wax and cutin biosynthesis in rice and enhances its tolerance to water deficit. Plant Mol Biol Rep, 2014, 32: 719–731
[16] 周小云, 陈信波, 徐向丽, 刘爱玲, 邹杰, 高国赋. 稻叶表皮蜡质提取方法及含量的比较. 湖南农业大学学报(自然科学版), 2007, 33(3): 273–276
Zhou X Y, Chen X B, Xu X L, Liu A L, Zou J, Gao G F. On comparison of extraction methods of epicuticular wax and content of rice leaves. J Hunan Agric Univ (Nat Sci), 2007, 33(3): 273–276 (in Chinese with English abstract)
[17] 何旎清, 柳周, 张龙, 白苏阳, 田云录, 江玲, 万建民. 一个新的水稻黄绿叶突变体的遗传分析及突变基因的精细定位. 作物学报, 2015, 41: 1155–1163
He N Q, Liu Z, Zhang L, Bai S Y, Tian Y L, Jiang L, Wan J M. Genetic analysis of a new yellow-green leaf mutant and fine-mapping of mutant gene in rice. Acta Agron Sin, 2015, 41: 1155–1163 (in Chinese with English abstract)
[18] Havaux M, Lutz C, Grimm B. Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiol, 2003, 132: 300–310
[19] Bates L, Waldren R, Teare I. Rapid determination of free proline for water-stress studies. Plant Soil, 1973, 39: 205–207
[20] Quan R, Hu S, Zhang Z, Zhang H, Zhang Z, Huang R. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J, 2010, 8: 476–488
[21] Chen M K, Hsu W H, Lee P F, Thiruvengadam M, Chen H, Yang C H. The MDAS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant J, 2011, 68: 168–185
[22] Li S, Wang X, He S, Li J, Huang Q, Imaizumi T, Qu L, Qin G, Qu L, Gu H. CFLAP1 and CFLAP2 are two bHLH transcription factors participating in synergistic regulation of AtCFL1-mediated cuticle development in Arabidopsis. PLoS Genet, 2016, DOI: 10.1371/journal.pgen.1005744
[23] Suh M C, Samuels A, Jetter R, Kunst L, Pollard M, Ohlrogge J, Beisson F. Cuticular lipid composition, surface structure and gene expression in Arabidopsis stem epidermis. Plant Physiol, 2005, 139: 1649–1665
[24] Aharoni A, Dixit S, Jetter R, Thoenes E, Arkel G, Pereira A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell, 2004, 16: 2463–2480
[25] Broun P, Pointdexter P, Osborne E, Jiang C Z, Riechmann J L. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 4706–4711
[26] Wang Y H, Wan L Y, Zhang L X, Zhang Z J, Zhang H W, Quan R D, Zhou S R, Huang R D. An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol, 2012, 78: 275–288
[27] Burghardt M, Riederer M. Cuticular transpiration. In: Riederer M, ed. Biology of the Plant Cuticle. Oxford: Blackwell Publishing, 2006. pp 292–311
[28] Mamrutha H M, Mogili T, Lakshmi K J, Rama N, Kosma D, Udaya-Kumar M, Jenks M A, Nataraja K N. Leaf cuticular waxamount and crystal morphology regulate post-harvest water loss in mulberry (Morus species). Plant Physiol Biochem, 2010, 48: 690–696
[29] Park J P, Jin P, Yoon J M, Yang J, Jeong H J, Ranathunge K, Schreiber L, Franke R, Lee I J, An G. Mutation in Wilted Dwarf and Lethal 1(WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol, 2010, 74: 91–103
[30] Oliveira A, Meirelles S T, Salatino A. Epicuticular waxes fromcaatinga and cerrado species and their efficiency against water loss. Anais da Academia Brasileira de Ciencias, 2003, 75: 431–439
[31] Islam M A, Du H, Ning J, Ye H Y, Xiong L Z. Characterization of glossyl-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol, 2009, 70: 443–456
[32] Mao B G, Cheng Z J, Lei C L, Xu F H, Gao S W, Ren Y L, Wang J L, Zhang X, Wang J, Wu F, Guo X P, Liu X L, Wu C Y, Wang H Y, Wan J M. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta, 2012, 235: 39–52
[33] Weng H, Molina I, Shockey J, Browse J. Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta, 2010, 231(5): 1089–1100 |