欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (03): 315-323.doi: 10.3724/SP.J.1006.2017.00315

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

OsWR2-RNAi对水稻角质层生物合成和耐旱性的影响

王莎1,贺勇1,罗光宇1,姚敏1,张旭1,陈信波1,2,周小云1,2,*   

  1. 1湖南农业大学生物科学技术学院,湖南长沙 410128;2作物基因工程湖南省重点实验室,湖南长沙 410128
  • 收稿日期:2016-07-20 修回日期:2016-11-02 出版日期:2017-03-12 网络出版日期:2016-11-11
  • 通讯作者: 周小云, E-mail: xyzhou71@hotmail.com
  • 基金资助:

    本研究由湖南省重点研发计划项目(2015JC3102), 湖南农业大学大学生创新计划项目(XCX1504)和国家自然科学基金项目(31300216)资助。

Influence of OsWR2-RNAi on Rice Cuticle Biosynthesis and Drought Resistance

WANG Sha1,HE Yong1,LUO Guang-Yu1,YAO Min1,ZHANG Xu1,CHEN Xin-Bo1,2,ZHOU Xiao-Yun1,2,*   

  1. 1 College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; 2 Crop Gene Engineering Key Laboratory of Hunan Province, Changsha 410128, China
  • Received:2016-07-20 Revised:2016-11-02 Published:2017-03-12 Published online:2016-11-11
  • Contact: 周小云, E-mail: xyzhou71@hotmail.com
  • Supported by:

    This study was supported by the Key Research Projects of Hunan (2015JC3102), the College Students Innovation Project of Hunan Agricultural University (XCX1504), and the National Natural Science Foundation of China (31300216).

摘要:

植物的角质层在干旱胁迫下对降低植物的非气孔性失水起重要作用。对水稻蜡质相关转录因子基因OsWR2过表达研究发现,OsWR2对水稻表皮蜡质和角质的含量和组分构成以及非气孔性失水都有影响,推测OsWR2是植物角质层代谢途径中重要的调控基因。本研究通过构建OsWR2-RNAi载体并转入水稻获得抑制OsWR2表达的突变转基因植株,发现OsWR2-RNAi水稻叶片角质层组成和含量明显变化,其蜡质组分中醛类、醇类和烷烃类的减少导致表皮蜡质晶体的积累和表皮蜡质总量减少14.8%,角质单体中C16:0和C18:1ω-OH脂肪酸和di-OH脂肪酸等角质组分含量的显著降低导致OsWR2-RNAi水稻叶片中角质单体总量减少36.2%。幼苗干旱处理前后,OsWR2-RNAi植株自由脯氨酸含量与野生型相比变化不大,但其表皮通透性、水分散失率和MAD含量显著增加,幼苗耐旱性降低。本研究结果进一步证实OSWR2对水稻蜡质和角质生物合成及对非气孔性失水的调控作用,有望为水稻耐旱性状的改良提供重要基因资源。

关键词: OsWR2, RNAi, 植物角质层, 干旱胁迫, 非气孔性失水

Abstract:

Plant cuticle plays an important role on decreasing plant non-stomatal water loss under drought stress. Overexpression of wax related transcription factor gene OsWR2 in rice can increase total cuticular wax and cutin amounts, affect cuticular wax and cutin monomer composition, and alter cuticular wax crystallization patterns and cuticle membrane ultrastructure, implying important roles of OsWR2 in rice cuticle biosynthesis and non-stomatal water loss regulation. In this report, we constructed OsWR2 RNA inhibition vector (OsWR2-RNAi), and transformed it into rice callus to obtain OsWR2 knockout rice mutants using Agrobacterium-mediated transforming method. OsWR2-RNAi transgenic rice exhibited reduced total cuticular wax amounts by 14.8% mainly due to the decrease of aldehydes, alkanes and alcohols, and lessened full cutin monomer level by 36.2% due primarily to the decrease of C16:0, C18:1 ω-OH and di-OH fatty acid components. OsWR2-RNAi transgenic rice also showed enriched leaf chlorophyll leaching, water loss rates and MDA contents, whereas reduced tolerance to water deficit . All these physiologic and biochemical index to support the previous hypothesis ofOsWR2 acting as a transcriptional regulator of both cuticle biosynthetic pathways and non-stomatal water loss, providing evidence of OsWR2 exerting direct influence over rice dehydration, and a potential application resource in genetic improvement of crop drought tolerance.

Key words: OsWR2, RNAi, Plant cuticle, Drought stress, Non-stomatal water loss

[1] Borisjuk N, Hrmova M, Lopato S. Transcriptional regulation of cuticle biosynthesis. Biotechnol Adv, 2014, 32: 526–540
[2] Medrano H, Escalona J, Bota J, Gulias, Flexas J. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot, 2002, 89: 895–905
[3] Chen X, Goodwin S, Liu X, Chen X, Bressan R, Jenks M A. Mutation of the RST1 locus of Arabidopsis reveals an association of cuticular wax with embryo development. Plant Physiol, 2005, 139: 909–919
[4] Zhang J Y, Broeckling C, Blancaflor E, Sledge M K, Summer L W, Wang Z Y. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J, 2005, 42: 689–707
[5] Yeats T, Rose J K C. The formation and function of plant cuticles. Plant Physiol, 2013, 163: 5–20
[6] Lee S B, Suh M C. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep, 2015, 34: 557–572
[7] Bernard A, Joubès J. Arabidopsis cuticular waxes: Advances in synthesis, export and regulation. Prog Lipid Res, 2013, 52: 110–129
[8] Espana L, Heredia-Guerrero J, Reina-Pinto J, Fernandez-Munoz R, Heredia A, Dominguez E. Transient silencing of CHALCONE SYNTHASE during fruit ripening modifies tomato epidermal cells and cuticle properties. Plant Physiol, 2014, 166: 1371–1386
[9] Schreiber L, Skrabs M, Hartmann K, Diamantopoulos P, Simanova E, Santrucek J. Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks. Planta, 2001, 214: 274–282
[10] Gan L, Wang X, Cheng Z, Liu L, Wang J, Zhang Z, Ren Y, Lei C, Zhao Z, Zhu S, Lin Q, Wu F, Guo X, Wang J, Zhang X, Wan J. Wax crystal-sparse leaf 3 encoding a β-ketoacyl-CoA reductase is involved in cuticular wax biosynthesis in rice. Plant Cell Rep, 2016, DOI 10.1007/s00299-016-1983-1
[11] Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Hofte H, Pauly M D, Riechmann J L, Broun P. The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell, 2007, 19: 1278–294
[12] Zhou X Y, Li L Z, Xiang J H, Gao G F, Xu F X, Liu A L, Zhang X W, Zou J, Peng Y, Chen X B, Wan X Y. OsGL1-3 is involved in cuticular wax biosynthesis and tolerance to water deficit in rice. PLoS One, 2015, 10(1): e116676. DOI: 10.1371/journal.pone.0116676
[13] Zhu X, Xiong L. Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice. Proc Natl Acad Sci USA, 2013, 110: 17790–17795
[14] Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23: 1138–1152
[15] Zhou X Y, Jenks M A, Liu J, Liu A L, Zhang X W, Xiang J H, Zou J, Peng Y, Chen X B. Overexpression of transcription factor OsWR2 regulates wax and cutin biosynthesis in rice and enhances its tolerance to water deficit. Plant Mol Biol Rep, 2014, 32: 719–731
[16] 周小云, 陈信波, 徐向丽, 刘爱玲, 邹杰, 高国赋. 稻叶表皮蜡质提取方法及含量的比较. 湖南农业大学学报(自然科学版), 2007, 33(3): 273–276
Zhou X Y, Chen X B, Xu X L, Liu A L, Zou J, Gao G F. On comparison of extraction methods of epicuticular wax and content of rice leaves. J Hunan Agric Univ (Nat Sci), 2007, 33(3): 273–276 (in Chinese with English abstract)
[17] 何旎清, 柳周, 张龙, 白苏阳, 田云录, 江玲, 万建民. 一个新的水稻黄绿叶突变体的遗传分析及突变基因的精细定位. 作物学报, 2015, 41: 1155–1163
He N Q, Liu Z, Zhang L, Bai S Y, Tian Y L, Jiang L, Wan J M. Genetic analysis of a new yellow-green leaf mutant and fine-mapping of mutant gene in rice. Acta Agron Sin, 2015, 41: 1155–1163 (in Chinese with English abstract)
[18] Havaux M, Lutz C, Grimm B. Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiol, 2003, 132: 300–310
[19] Bates L, Waldren R, Teare I. Rapid determination of free proline for water-stress studies. Plant Soil, 1973, 39: 205–207
[20] Quan R, Hu S, Zhang Z, Zhang H, Zhang Z, Huang R. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J, 2010, 8: 476–488
[21] Chen M K, Hsu W H, Lee P F, Thiruvengadam M, Chen H, Yang C H. The MDAS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant J, 2011, 68: 168–185
[22] Li S, Wang X, He S, Li J, Huang Q, Imaizumi T, Qu L, Qin G, Qu L, Gu H. CFLAP1 and CFLAP2 are two bHLH transcription factors participating in synergistic regulation of AtCFL1-mediated cuticle development in Arabidopsis. PLoS Genet, 2016, DOI: 10.1371/journal.pgen.1005744
[23] Suh M C, Samuels A, Jetter R, Kunst L, Pollard M, Ohlrogge J, Beisson F. Cuticular lipid composition, surface structure and gene expression in Arabidopsis stem epidermis. Plant Physiol, 2005, 139: 1649–1665
[24] Aharoni A, Dixit S, Jetter R, Thoenes E, Arkel G, Pereira A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell, 2004, 16: 2463–2480
[25] Broun P, Pointdexter P, Osborne E, Jiang C Z, Riechmann J L. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 4706–4711
[26] Wang Y H, Wan L Y, Zhang L X, Zhang Z J, Zhang H W, Quan R D, Zhou S R, Huang R D. An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol, 2012, 78: 275–288
[27] Burghardt M, Riederer M. Cuticular transpiration. In: Riederer M, ed. Biology of the Plant Cuticle. Oxford: Blackwell Publishing, 2006. pp 292–311
[28] Mamrutha H M, Mogili T, Lakshmi K J, Rama N, Kosma D, Udaya-Kumar M, Jenks M A, Nataraja K N. Leaf cuticular waxamount and crystal morphology regulate post-harvest water loss in mulberry (Morus species). Plant Physiol Biochem, 2010, 48: 690–696
[29] Park J P, Jin P, Yoon J M, Yang J, Jeong H J, Ranathunge K, Schreiber L, Franke R, Lee I J, An G. Mutation in Wilted Dwarf and Lethal 1(WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol, 2010, 74: 91–103
[30] Oliveira A, Meirelles S T, Salatino A. Epicuticular waxes fromcaatinga and cerrado species and their efficiency against water loss. Anais da Academia Brasileira de Ciencias, 2003, 75: 431–439
[31] Islam M A, Du H, Ning J, Ye H Y, Xiong L Z. Characterization of glossyl-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol, 2009, 70: 443–456
[32] Mao B G, Cheng Z J, Lei C L, Xu F H, Gao S W, Ren Y L, Wang J L, Zhang X, Wang J, Wu F, Guo X P, Liu X L, Wu C Y, Wang H Y, Wan J M. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta, 2012, 235: 39–52
[33] Weng H, Molina I, Shockey J, Browse J. Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta, 2010, 231(5): 1089–1100

[1] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[2] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[3] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[4] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[5] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[6] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[7] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[8] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
[9] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[10] 李晓旭, 王蕊, 张利霞, 宋亚萌, 田晓楠, 葛荣朝. 水稻基因OsATS的克隆及功能鉴定[J]. 作物学报, 2021, 47(10): 2045-2052.
[11] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051.
[12] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[13] 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364.
[14] 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704.
[15] 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!