[1] Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta, 2012, 1819: 86–96
[2] Shinozaki K, Yamaguchi-Shinozaki K: Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58: 221–227
[3] 康宗利, 杨玉红, 张立军. 植物响应干旱胁迫的分子机制. 玉米科学, 2006, 14(2): 96–100
Kang Z L, Yang Y H, Zhang L J. Molecular mechanism of responsing to drought stress in plants. Maize Sci, 2006, 14(2): 96–100 (in Chinese with English abstract)
[4] Aso K, Kato M, Banks J A, Hasebe M. Characterization of homeodomain-leucine zipper genes in the fern Ceratopteris richardii and the evolution of the homeodomain-leucine zipper gene family in vascular plants. Mol Biol Evol, 1999, 16: 544–552
[5] Sakakibara K, Nishiyama T, Kato M, Hasebe M. Isolation of homeodomain-leucine zipper genes from the moss Physcomitrella patens and the evolution of homeodomain-leucine zipper genes in land plants. Mol Biol Evol, 2001, 18: 491–502
[6] Schena M, Davis R W. HD-Zip proteins: members of an Arabidopsis homeodomain protein superfamily. Proc Natl Acad Sci USA, 1992, 89: 3894–3898
[7] Meijer A H, Scarpella E, van Dijk E L, Qin L, Taal A J, Rueb S, Harrington S E, McCouch S R, Schilperoort R A, Hoge J H. Transcriptional repression by Oshox1, a novel homeodomain leucine zipper protein from rice. Plant J, 1997, 11: 263–276
[8] Zhao Y, Zhou Y, Jiang H, Li X, Gan D, Peng X, Zhu S, Cheng B. Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize. PLoS One, 2011, 6: e28488
[9] Re D A, Dezar C A, Chan R L, Baldwin I T, Bonaventure G. Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions. J Exp Bot, 2011, 62: 155–166
[10] Zhang Z, Chen X, Guan X, Liu Y, Chen H, Wang T, Mouekouba LD, Li J, Wang A. A genome-wide survey of homeodomain-leucine zipper genes and analysis of cold-responsive HD-Zip I members' expression in tomato. Biosci Biotechnol Biochem, 2014, 78: 1337–1349
[11] Matsumoto T, Morishige H, Tanaka T, Kanamori H, Komatsuda T, Sato K, Itoh T, Wu J, Nakamura S. Transcriptome analysis of barley identifies heat shock and HD-Zip I transcription factors up-regulated in response to multiple abiotic stresses. Mol Breed, 2014, 34: 761–768
[12] Chen X, Chen Z, Zhao H, Zhao Y, Cheng B, Xiang Y. Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments. PLoS One, 2014, 9: e87156
[13] Rueda E C, Dezar C A, Gonzalez D H, Chan R L. Hahb-10, a sunflower homeobox-leucine zipper gene, is regulated by light quality and quantity, and promotes early flowering when expressed in Arabidopsis. Plant Cell Physiol, 2005, 46: 1954–1963
[14] Song A, Li P, Xin J, Chen S, Zhao K, Wu D, Fan Q, Gao T, Chen F, Guan Z. Transcriptome-wide survey and expression profile analysis of putative chrysanthemum HD-Zip I and II genes. Genes, 2016, 7: 19
[15] Chan R L, Gago G M, Palena C M, Gonzalez D H. Homeoboxes in plant development. Biochim Biophys Acta, 1998, 1442: 1–19
[16] Olsson AS, Engstrom P, Soderman E. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol, 2004, 55: 663–677
[17] Gago G M, Jordano C A J, Gonzalez D H, Chan R L. Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower. Plant, Cell Environ, 2002, 25: 633–640
[18] Cabello J V, Arce A L, Chan R L. The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J, 2012, 69: 141–153
[19] Agalou A, Purwantomo S, Overnas E, Johannesson H, Zhu X, Estiati A, de Kam R J, Engstrom P, Slamet-Loedin I H, Zhu Z Wang M, Xiong L, Meijer A, Ouwerkerk P. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol, 2008, 66: 87–103
[20] Hanson J, Johannesson H, Engstrom P. Sugar-dependent alterations in cotyledon and leaf development in transgenic plants expressing the HD-Zip gene ATHB13. Plant Mol Biol, 2001, 45: 247–262
[21] Henriksson E, Olsson A S, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E. Homeodomain leucine zipper class I genes in Arabidopsis. expression patterns and phylogenetic relationships. Plant Physiol, 2005, 139: 509–518
[22] Wang Y, Henriksson E, Soderman E, Henriksson K N, Sundberg E, Engstrom P. The Arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Dev Biol, 2003, 264: 228–239
[23] Lechner E, Leonhardt N, Eisler H, Parmentier Y, Alioua M, Jacquet H, Leung J, Genschik P. MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling. Dev Cell, 2011, 21: 1116–1128
[24] Park J, Lee H J, Cheon C I, Kim S H, Hur Y S, Auh C K, Im K H, Yun D J, Lee S, Davis K R. The Arabidopsis thaliana homeobox gene ATHB12 is involved in symptom development caused by geminivirus infection. PLoS One, 2011, 6: e20054
[25] Son O, Hur Y S, Kim Y K, Lee H J, Kim S, Kim M R, Nam K H, Lee M S, Kim B Y, Park J. ATHB12, an ABA-inducible homeodomain-leucine zipper (HD-Zip) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20-oxidase gene. Plant Cell Physiol, 2010, 51: 1537–1547
[26] Elhiti M, Stasolla C. Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Plant Signal Behav, 2009, 4: 86–88
[27] Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E. Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J, 2002, 21: 3029–3038
[28] Mayda E, Tornero P, Conejero V, Vera P. A tomato homeobox gene (HD-zip) is involved in limiting the spread of programmed cell death. Plant J, 1999, 20: 591–600
[29] Zhao Y, Ma Q, Jin X, Peng X, Liu J, Deng L, Yan H, Sheng L, Jiang H, Cheng B. A novel Maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis. Plant Cell Physiol, 2014, 55: 1142–1156
[30] Manavella P A, Arce A L, Dezar C A, Bitton F, Renou J P, Crespi M, Chan R L. Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J, 2006, 48: 125–137
[31] Zhao P, Liu P, Shao J, Li C, Wang B, Guo X, Yan B, Xia Y, Peng M. Analysis of different strategies adapted by two cassava cultivars in response to drought stress: ensuring survival or continuing growth. J Exp Bot, 2015, 66: 1477–1488
[32] 于晓玲, 王淦, 阮孟斌, 刘恩世, 彭明. 水分胁迫对不同木薯品种叶片生理生化的影响. 中国农学通报, 2012, 28(33): 60–64
Yu X L, Wang G, Ruan M B, Liu E S, Peng M. Physiological and biochemical changes of leaves in different cassava varieties under water stress. Chin Agric Sci Bull, 2012, 28(33): 60–64 (in Chinese with English abstract)
[33] Hebsgaard S M, Korning P G, Tolstrup N, Engelbrecht J, Rouze P, Brunak S. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucl Acids Res, 1996, 24: 3439–3452
[34] 郭安源, 朱其慧, 陈新, 罗静初. GSDS:基因结构显示系统. 遗传, 2007, 29: 1023–1026
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas (Beijing), 2007, 29:1023–1026
[35] Ariel F D, Manavella P A, Dezar C A, Chan R L, Chan R L. The true story of the HD-Zip family. Trends Plant Sci, 2007, 12: 419–426
[36] Soderman E, Mattsson J, Engstrom P. The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J, 1996, 10: 375–381
[37] Van Hove J, Stefanowicz K, De Schutter K, Eggermont L, Lannoo N, Al Atalah B, Van Damme EJ. Transcriptional profiling of the lectin ArathEULS3 from Arabidopsis thaliana toward abiotic stresses. J Plant Physiol, 2014, 171: 1763–1773
[38] Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signaling. Trends Plant Sci, 2010, 15: 395–401
[39] Christmann A, Weiler E W, Steudle E, Grill E. A hydraulic signal in root-to-shoot signaling of water shortage. Plant J, 2007, 52: 167–174
[40] Zeller G, Henz S R, Widmer C K, Sachsenberg T, Ratsch G, Weigel D, Laubinger S. Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J, 2009, 58: 1068–1082 |