欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (08): 1181-1189.doi: 10.3724/SP.J.1006.2017.01181

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

木薯转录因子基因MeHDZ14的克隆与分析

于晓玲,阮孟斌,王斌,杨义伶,王树昌*,彭明*   

  1. 中国热带农业科学院热带生物技术研究所 / 农业部热带作物生物学与遗传资源利用重点实验室, 海南海口 571101
  • 收稿日期:2016-12-09 修回日期:2017-04-20 出版日期:2017-08-12 网络出版日期:2017-05-11
  • 通讯作者: 王树昌, E-mail: wangshuchang2001@163.com; 彭明, E-mail: pengming@itbb.org.cn
  • 基金资助:

    本研究由国际科技合作与交流项目(31561143012, 2013DFA32020)和国家青年科学基金项目(31501378)资助。

Cloning and Analysis of Structure and Expression of MeHDZ14 Gene in Cassava

YU Xiao-Ling,RUAN Meng-Bin,WANG Bin,YANG Yi-Ling,WANG Shu-Chang*,PENG Ming*   

  1. Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science / Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 571101, China
  • Received:2016-12-09 Revised:2017-04-20 Published:2017-08-12 Published online:2017-05-11
  • Contact: 王树昌, E-mail: wangshuchang2001@163.com; 彭明, E-mail: pengming@itbb.org.cn
  • Supported by:

    This study was supported by the International Science & Technology Cooperation Program of China (31561143012,2013DFA32020) and the National Natural Science Foundation of China (31501378).

摘要:

HD-Zip家族基因在植物生长发育和逆境胁迫中起重要作用。为了研究MeHDZ14基因在非生物胁迫(尤其是干旱)应答中的作用,选用对干旱信号反应灵敏、相对耐旱的木薯品种“SC124”做为实验材料,利用RT-PCR克隆了MeHDZ14基因。生物信息学分析发现,MeHDZ14基因编码的蛋白具有典型的HD-Zip保守结构域。将该基因编码的蛋白与GFP融合,亚细胞MeHDZ14:GFP重组蛋白定位于细胞核。同时,酵母Y187中的转录自激活试验结果也表明,MeHDZ14蛋白具有明显转录自激活功能。推断MeHDZ14是一个典型的HD-Zip I转录因子。MeHDZ14启动子区具有多个ABA响应元件ABRE (ABA response element);基因差异表达分析结果表明,MeHDZ14基因在叶片和根中的表达受干旱胁迫的诱导,并对外源ABA具有明显的响应。因此,认为MeHDZ14基因通过ABA依赖信号传导途径参与调控木薯干旱响应。此外,还发现MeHDZ14基因的编码区虽然存在数个SNP,但表现出高度保守性;且在不同木薯品种中的表达对干旱胁迫均有明显的响应,为进一步研究该基因的功能奠定了基础。

关键词: 木薯, MeHDZ14, 结构特性, 表达分析

Abstract:

HD-Zip family genes play an important role in plant growth and stress response. To reveal the role of MeHDZ14 gene in abiotic stresses (e.g. drought) in cassava, we cloned MeHDZ14 gene by using RT-PCR from cassava cultivar SC124, which was relatively more resistant to drought stress. Bioinformatics methods were used to analyze its structural characteristics, and semi-RT-PCR/qRT-PCR was used to explore its expression patterns in response to abiotic stresses in different plant tissues and varieties. MeHDZ14 has a 726 bp open reading frame, encoding 241 amino acids, and contains the typical HD and ZIP domain. Blastp analysis showed that MeHDZ14 has close genetic relationship with ATHB-7, which is a member of the family I HD-Zip gene. Yeast and subcellular localization test showed that the MeHDZ14 gene is a transcription factor and specifically expresses in the nucleus. Genetic structural variation analysis revealed a total of four mis-sense mutations in eight tested varieties. However, amino acid mutations were not found between wild and cultivated cassavas. This indicates the MeHDZ14 proteins are highly conserved. Semi-RT PCR analysis revealed that MeHDZ14 was specifically expressed in petioles, and induced by drought stress in root and leaf, suggesting that MeHDZ14 plays an important role in the early drought stage. Analysis by qRT-PCR showed that MeHDZ14 gene had different expression levels in different cassava varieties, but the same mode under drought stress and ABA treatment. These data indicate that MeHDZ14 is a member of the ABA pathway responding to drought. Our results showed that MeHDZ14 plays an important role in the molecular pathways of cassava drought resistance, underlining its potential in genetic improvement of cassava drought tolerance.

Key words: Cassava, MeHDZ14, Structure characteristics, Expression analysis

[1] Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta, 2012, 1819: 86–96
[2] Shinozaki K, Yamaguchi-Shinozaki K: Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58: 221–227
[3] 康宗利, 杨玉红, 张立军. 植物响应干旱胁迫的分子机制. 玉米科学, 2006, 14(2): 96–100
Kang Z L, Yang Y H, Zhang L J. Molecular mechanism of responsing to drought stress in plants. Maize Sci, 2006, 14(2): 96–100 (in Chinese with English abstract)
[4] Aso K, Kato M, Banks J A, Hasebe M. Characterization of homeodomain-leucine zipper genes in the fern Ceratopteris richardii and the evolution of the homeodomain-leucine zipper gene family in vascular plants. Mol Biol Evol, 1999, 16: 544–552
[5] Sakakibara K, Nishiyama T, Kato M, Hasebe M. Isolation of homeodomain-leucine zipper genes from the moss Physcomitrella patens and the evolution of homeodomain-leucine zipper genes in land plants. Mol Biol Evol, 2001, 18: 491–502
[6] Schena M, Davis R W. HD-Zip proteins: members of an Arabidopsis homeodomain protein superfamily. Proc Natl Acad Sci USA, 1992, 89: 3894–3898
[7] Meijer A H, Scarpella E, van Dijk E L, Qin L, Taal A J, Rueb S, Harrington S E, McCouch S R, Schilperoort R A, Hoge J H. Transcriptional repression by Oshox1, a novel homeodomain leucine zipper protein from rice. Plant J, 1997, 11: 263–276
[8] Zhao Y, Zhou Y, Jiang H, Li X, Gan D, Peng X, Zhu S, Cheng B. Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize. PLoS One, 2011, 6: e28488
[9] Re D A, Dezar C A, Chan R L, Baldwin I T, Bonaventure G. Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions. J Exp Bot, 2011, 62: 155–166
[10] Zhang Z, Chen X, Guan X, Liu Y, Chen H, Wang T, Mouekouba LD, Li J, Wang A. A genome-wide survey of homeodomain-leucine zipper genes and analysis of cold-responsive HD-Zip I members' expression in tomato. Biosci Biotechnol Biochem, 2014, 78: 1337–1349
[11] Matsumoto T, Morishige H, Tanaka T, Kanamori H, Komatsuda T, Sato K, Itoh T, Wu J, Nakamura S. Transcriptome analysis of barley identifies heat shock and HD-Zip I transcription factors up-regulated in response to multiple abiotic stresses. Mol Breed, 2014, 34: 761–768
[12] Chen X, Chen Z, Zhao H, Zhao Y, Cheng B, Xiang Y. Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments. PLoS One, 2014, 9: e87156
[13] Rueda E C, Dezar C A, Gonzalez D H, Chan R L. Hahb-10, a sunflower homeobox-leucine zipper gene, is regulated by light quality and quantity, and promotes early flowering when expressed in Arabidopsis. Plant Cell Physiol, 2005, 46: 1954–1963
[14] Song A, Li P, Xin J, Chen S, Zhao K, Wu D, Fan Q, Gao T, Chen F, Guan Z. Transcriptome-wide survey and expression profile analysis of putative chrysanthemum HD-Zip I and II genes. Genes, 2016, 7: 19
[15] Chan R L, Gago G M, Palena C M, Gonzalez D H. Homeoboxes in plant development. Biochim Biophys Acta, 1998, 1442: 1–19
[16] Olsson AS, Engstrom P, Soderman E. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol, 2004, 55: 663–677
[17] Gago G M, Jordano C A J, Gonzalez D H, Chan R L. Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower. Plant, Cell Environ, 2002, 25: 633–640
[18] Cabello J V, Arce A L, Chan R L. The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J, 2012, 69: 141–153
[19] Agalou A, Purwantomo S, Overnas E, Johannesson H, Zhu X, Estiati A, de Kam R J, Engstrom P, Slamet-Loedin I H, Zhu Z Wang M, Xiong L, Meijer A, Ouwerkerk P. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol, 2008, 66: 87–103
[20] Hanson J, Johannesson H, Engstrom P. Sugar-dependent alterations in cotyledon and leaf development in transgenic plants expressing the HD-Zip gene ATHB13. Plant Mol Biol, 2001, 45: 247–262
[21] Henriksson E, Olsson A S, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E. Homeodomain leucine zipper class I genes in Arabidopsis. expression patterns and phylogenetic relationships. Plant Physiol, 2005, 139: 509–518
[22] Wang Y, Henriksson E, Soderman E, Henriksson K N, Sundberg E, Engstrom P. The Arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Dev Biol, 2003, 264: 228–239
[23] Lechner E, Leonhardt N, Eisler H, Parmentier Y, Alioua M, Jacquet H, Leung J, Genschik P. MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling. Dev Cell, 2011, 21: 1116–1128
[24] Park J, Lee H J, Cheon C I, Kim S H, Hur Y S, Auh C K, Im K H, Yun D J, Lee S, Davis K R. The Arabidopsis thaliana homeobox gene ATHB12 is involved in symptom development caused by geminivirus infection. PLoS One, 2011, 6: e20054
[25] Son O, Hur Y S, Kim Y K, Lee H J, Kim S, Kim M R, Nam K H, Lee M S, Kim B Y, Park J. ATHB12, an ABA-inducible homeodomain-leucine zipper (HD-Zip) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20-oxidase gene. Plant Cell Physiol, 2010, 51: 1537–1547
[26] Elhiti M, Stasolla C. Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Plant Signal Behav, 2009, 4: 86–88
[27] Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E. Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J, 2002, 21: 3029–3038
[28] Mayda E, Tornero P, Conejero V, Vera P. A tomato homeobox gene (HD-zip) is involved in limiting the spread of programmed cell death. Plant J, 1999, 20: 591–600
[29] Zhao Y, Ma Q, Jin X, Peng X, Liu J, Deng L, Yan H, Sheng L, Jiang H, Cheng B. A novel Maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis. Plant Cell Physiol, 2014, 55: 1142–1156
[30] Manavella P A, Arce A L, Dezar C A, Bitton F, Renou J P, Crespi M, Chan R L. Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J, 2006, 48: 125–137
[31] Zhao P, Liu P, Shao J, Li C, Wang B, Guo X, Yan B, Xia Y, Peng M. Analysis of different strategies adapted by two cassava cultivars in response to drought stress: ensuring survival or continuing growth. J Exp Bot, 2015, 66: 1477–1488
[32] 于晓玲, 王淦, 阮孟斌, 刘恩世, 彭明. 水分胁迫对不同木薯品种叶片生理生化的影响. 中国农学通报, 2012, 28(33): 60–64
Yu X L, Wang G, Ruan M B, Liu E S, Peng M. Physiological and biochemical changes of leaves in different cassava varieties under water stress. Chin Agric Sci Bull, 2012, 28(33): 60–64 (in Chinese with English abstract)
[33] Hebsgaard S M, Korning P G, Tolstrup N, Engelbrecht J, Rouze P, Brunak S. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucl Acids Res, 1996, 24: 3439–3452
[34] 郭安源, 朱其慧, 陈新, 罗静初. GSDS:基因结构显示系统. 遗传, 2007, 29: 1023–1026
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas (Beijing), 2007, 29:1023–1026
[35] Ariel F D, Manavella P A, Dezar C A, Chan R L, Chan R L. The true story of the HD-Zip family. Trends Plant Sci, 2007, 12: 419–426
[36] Soderman E, Mattsson J, Engstrom P. The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J, 1996, 10: 375–381
[37] Van Hove J, Stefanowicz K, De Schutter K, Eggermont L, Lannoo N, Al Atalah B, Van Damme EJ. Transcriptional profiling of the lectin ArathEULS3 from Arabidopsis thaliana toward abiotic stresses. J Plant Physiol, 2014, 171: 1763–1773
[38] Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signaling. Trends Plant Sci, 2010, 15: 395–401
[39] Christmann A, Weiler E W, Steudle E, Grill E. A hydraulic signal in root-to-shoot signaling of water shortage. Plant J, 2007, 52: 167–174
[40] Zeller G, Henz S R, Widmer C K, Sachsenberg T, Ratsch G, Weigel D, Laubinger S. Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J, 2009, 58: 1068–1082

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[4] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[5] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[6] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[7] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[8] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[9] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[10] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[11] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[12] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[13] 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2aGmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032.
[14] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[15] 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!