欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (02): 197-207.doi: 10.3724/SP.J.1006.2018.00197

• • 上一篇    下一篇

甘蓝型油菜蔗糖磷酸合酶(SPS)基因家族成员鉴定及表达分析

张莉**, 荐红举**, 杨博, 张翱翔, 张超, 杨鸿, 张立源, 刘列钊, 徐新福, 卢坤, 李加纳*()   

  1. 西南大学农学与生物科技学院, 重庆 400715;
  • 收稿日期:2017-05-03 接受日期:2017-09-10 出版日期:2018-02-12 网络出版日期:2017-10-27
  • 通讯作者: 张莉,荐红举,李加纳
  • 作者简介:

    第一作者联系方式: 张莉, E-mail: windylili@foxmail.com; 荐红举, E-mail: jianhongju1989@126.com; ** 同等贡献(Contributed equally to this work)

  • 基金资助:
    本研究由国家自然科学基金项目(U1302266), 国家科技支撑计划项目(2013BAD01B03-12), 国家现代农业产业技术体系建设专项(CARS-13), 重庆市社会事业与民生保障科技创新专项(cstc2016shms-ztzx80020)和重庆市研究生科研创新项目(CYS16082)资助

Genome-wide Analysis and Expression Profiling of SPS Gene Family in Brassica nupus L.

Li ZHANG**, Hong-Ju JIAN**, Bo YANG, Ao-Xiang ZHANG, Chao ZHANG, Hong YANG, Li-Yuan ZHANG, Lie-Zhao LIU, Xin-Fu XU, Kun LU, Jia-Na LI*   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China;
  • Received:2017-05-03 Accepted:2017-09-10 Published:2018-02-12 Published online:2017-10-27
  • Contact: Li ZHANG,Hong-Ju JIAN,Jia-Na LI
  • Supported by:
    This study was supported by the Natural Science Foundation of China (U1302266), the National Key Technologies R&D Program of China (2013BAD01B03-12), the China Agriculture Research System (CARS-13), the Science and Technology Innovation Project of Social Undertakings and Livelihood Protection of Chongqing (cstc2016shms-ztzx80020), and the Scientific Research Innovation Projects for Graduate Student of Chongqing (CYS16082).

摘要:

蔗糖磷酸合酶(sucrose phosphate synthase, SPS)是调控植物蔗糖合成的限速酶, 对光合产物的转运和积累有重要影响。利用拟南芥SPS蛋白保守结构域在甘蓝型油菜基因组数据库鉴定出11个甘蓝型油菜SPS基因家族成员, 根据系统进化分析将其分成A、B和C共3个亚家族。基因结构预测表明, SPSC-1有5个外显子, 其他SPS基因均有11~15个外显子。顺式作用元件分析表明, 油菜SPS基因除含基本的启动子保守元件外, 还含有许多与逆境和激素响应相关的顺式作用元件。实时荧光定量PCR结果表明, BnSPSA1在花中表达量最高, BnSPSA2在各组织中均有不同程度的表达, BnSPSB只在叶、蕾和花中表达, BnSPSC在叶中表达量最高, 在蕾和花中有少量表达而在其他组织中基本不表达, 说明SPS基因在甘蓝型油菜中的表达具有明显的组织特异性; BnSPSA1BnSPSC在高生物产量油菜叶片中的表达高于低生物产量油菜, BnSPSB则在低生物产量油菜中的表达量更高, 说明SPS基因与油菜生物产量密切相关。本研究为油菜SPS基因的功能研究和利用奠定了基础。

关键词: 甘蓝型油菜, 蔗糖磷酸合酶, 全基因组鉴定, 表达分析

Abstract:

Sucrose phosphate synthase (SPS) is the rate-limiting enzyme that controls the sucrose biosynthesis in plants and has great influence on transportation and accumulation of photosynthate. In this study, we identified 11 members of the SPS gene family in the oilseed rape (Brassica nupus L.) genome. These SPS genes were classed into clusters A, B, and C according to gene structure and phylogenetic relationship. Gene structure prediction indicated that BnSPS genes were highly conserved, in which BnSPSC-1 consisted five exons and others consisted 11-15 exons. Promoter cis-element analysis indicated that BnSPS genes had not only essential responsive elements but also some types of elements potentially responsive to stresses or hormone responses. The qRT-PCR assay showed tissue-specific expressions of BnSPS genes with rich expressions of BnSPSA1 in flower, BnSPSB in leaf, bud and flower, BnSPSC in leaf, and BnSPSA2 in various tissues. The relative expression levels of BnSPSA1 and BnSPSC were higher in high-biomass rapeseed varieties than in low-biomass rapeseed varieties, whereas, that of BnSPSB was higher in low-biomass rapeseed varieties, suggesting that SPS genes are closely ralated to biological yield of rapeseed. This study provides basic information for functional study and utilization of BnSPS genes.

Key words: Brassica napus, sucrose phosphate synthase, genome-wide analysis, expression analysis

图1

拟南芥、甘蓝、白菜和甘蓝型油菜中SPS家族进化树(邻接法) 红字表示甘蓝型油菜SPS蛋白, 进化枝上的数字代表自举值。"

附图1

33个甘蓝型油菜自交系群体生物产量的频次分布"

附表1

甘蓝型油菜33个自交系的生物产量"

自交系编号
Code of inbred
line
品种名称
Variety name
生物产量
Biological yield
(g plant-1)
自交系编号
Code of inbred
line
品种名称
Variety name
生物产量
Biological yield
(g plant-1)
L1 云花油9号Yunhuayou 9 198 L18 SWU63 121
L2 中双11 Zhongshuang 11 180 L19 SWU82 119
L3 SWU47 172 L20 秦油5号 Qinyou 5 118
L4 WH-30 171 L21 WH-30 115
L5 SWU106 164 L22 SWU71 113
L6 盐油2号 Yanyou 2 160 L23 SWU80 112
L7 油研10选 Youyan 10 xuan 157 L24 SWU97 111
L8 中双4号 Zhongshuang 4 155 L25 2012-8380 110
L9 沪油14 Huyou 14 154 L26 WH-62 105
L10 中双12 Zhongshuang 12 152 L27 华油2号 Huayou 2 99
L11 宁油12 Ningyou 12 148 L28 丰油9号 Fengyou 9 96
L12 Wx10315 146 L29 中油821 Zhongyou 821 95
L13 SWU94 140 L30 SWU108 93
L14 云油双1号 Yunyoushuang 1 139 L31 SWU101 89
L15 2012-9323 134 L32 10-1047 87
L16 华双128 Huashuang 128 131 L33 花油8号 Huayou 8 59
L17 SWU68 128

附表2

引物序列"

基因 Gene 引物序列 Primer sequence (5′-3′)
Actin7 F: TGGGTTTGCTGGTGACGAT; R: TGCCTAGGACGACCAACAATACT
BnSPSA1-1 F: AGGATAAGTATATCCCGAAGGAACTC; R: CGTCACCAGCATCAGCGTAGT
BnSPSA1-2 F: CACATGATGGTGATATGGAAGACG; R: GATATTCTTTTTTGGGTCGGGC
BnSPSA1-3 F: GAGACTGATCTTCACAAGTCATGGA; R: TCCTTTTCCTCATGCTGCTTCT
BnSPSA2-1 F: AAATGGCAGAGAGTCGAGTTCG; R: AGCTTAGCTTTTCTTTCAGCGGT
BnSPSA2-2 F: TGCTAGTGCGATGGGGGAT; R: GGTAGCTTCTGTTGCCGTGC
BnSPSA2-3 F: TGACTGGAGCTATGCCGAACCT; R: GGACATCTGCATCACATGGCTAAG
BnSPSA2-4 F: CGGTTTGATACGAGGTGAGAACAT; R: GCATCTCAGACGGTTCAGCG
BnSPSB-1 F: ATGTCGTATGAGACATCCCCAGT; R: TATTCGGTTCAAGAGACGCATTC
BnSPSB-2 F: CGAGGAACTTATCTCTGGCACAC; R: CCAATAAAAGGACTCTCTGACGG
BnSPSC-1 F: ACGTGAAAAAGGACGCAATGAT; R: GCAGATAGAGGCAGGCACAATG
BnSPSC-2 F: GTGATTACTGCTGATTCCTACGATG; R: TATTTTTCCCTTGCCCGATGT

表1

甘蓝型油菜SPS预测编码蛋白信息"

基因名称
Gene name
基因序列号
Gene ID
氨基酸数量
Amino acid number
分子量
Molecular weight (kD)
等电点
Isoelectric point
染色体
Chromosome
BnSPSA1-1 BnaC09g37470D 966 109.2 6.35 C09
BnSPSA1-2 BnaA10g15120D 966 109.0 6.29 A10
BnSPSA1-3 BnaA02g04800D 972 109.3 5.52 A02
BnSPSA2-1 BnaA03g03230D 1039 116.3 6.13 A03
BnSPSA2-2 BnaC03g04660D 962 107.4 6.66 C03
BnSPSA2-3 BnaC07g29460D 967 107.9 6.78 C07
BnSPSA2-4 BnaA06g27590D 960 107.2 6.66 A06
BnSPSB-1 BnaA10g03060D 1064 119.5 5.74 A10
BnSPSB-2 BnaC05g02930D 1065 119.6 5.74 C05
BnSPSC-1 BnaC02g29300D 473 53.8 8.06 C02
BnSPSC-2 BnaA02g23460D 1047 118.5 6.24 A02

图2

白菜(a)、甘蓝(b)和甘蓝型油菜(c)的SPS基因染色体分布"

图3

油菜SPS基因家族的结构(A)和保守元件(B)"

图4

BnSPS基因在中双11中的组织特异表达分析 R: 根; S: 茎; L: 叶片; B: 蕾; F: 花: SE: 种子; SW: 角果皮。误差线表示3次生物学重复的标准差。以基因的叶片表达相对水平为对照, *和**分别表示基因在某个器官中的表达水平与对照有显著(P < 0.05)和极显著(P < 0.01)差异。"

表2

甘蓝型油菜SPS基因启动子中顺式作用元件的种类与数量"

基因 Gene ABRE ARE CGTCA-motif GARE-motif MBS TCA-element TGACG-motif
SPSA1-1 0 4 3 3 0 2 3
SPSA1-2 0 1 3 2 1 2 3
SPSA1-3 0 1 0 0 0 1 0
SPSA2-1 1 3 1 2 1 0 1
SPSA2-2 1 2 1 3 1 0 1
SPSA2-3 0 1 0 1 2 1 0
SPSA2-4 6 1 3 1 2 2 3
SPSB-1 5 6 1 1 1 2 1
SPSB-2 4 4 2 1 1 1 2
SPSC-1 0 0 2 1 1 0 2
SPSC-2 0 0 2 2 1 0 2
总计Total 17 23 18 17 11 11 18

图5

高、低生物产量甘蓝型油菜SPS基因在不同器官中的差异表达 L: 叶片; S: 茎; SE: 种子; SW: 角果皮。误差线表示3次生物学重复的标准差。以SWU97中基因相对表达水平为对照, *和**分别表示某一品种与对照相同器官表达量有显著(P < 0.05)和极显著(P < 0.01)差异。中双4号、WH-30和SWU47为高生物产量品种, WH-62和SWU97为低生物产量品种。"

[1] Farrar J, Pollock C, Gallagher J.Sucrose and the integration of metabolism in vascular plants.Plant Sci, 2000, 154: 1-11
[2] Bahaji A, Baroja F E, Ricarte B A, Sánchez L Á M, Muñoz F J, Romero J M, Ruiz M T, Baslam M, Almagro G, Sesma M T, Pozueta R J. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis.Plant Sci, 2015, 238: 135-147
[3] Huber S C, Huber J L.Role and regulation of sucrose-phosphate synthase in higher plants.Annu Rev Plant Biol, 1996, 47: 199-222
[4] 李永庚, 于振文, 姜东, 余松烈. 冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究. 作物学报, 2001, 27: 658-664
Li Y G, Yu Z W, Jiang D, Yu S L.Studies on the dynamic changes of the synthesis of sucrose in the flag leaf and starch in the grain and related enzymes of high yielding wheat.Acta Agron Sin, 2001, 27: 658-664 (in Chinese with English abstract)
[5] Sawitri W D, Narita H, Ishizaka I E, Sugiharto B, Hase T, Nakagawa A.Purification and characterization of recombinant sugarcane sucrose phosphate synthase expressed inE. coli and insect Sf9 cells: an importance of the N-terminal domain for an allosteric regulatory property. J Biochem, 2016, 159: 599-607
[6] Langenkämper G, Fung R W M, Newcomb R D, Atkinson R G. Gardner R C, MacRae E A. Sucrose phosphate synthase genes in plants belong to three different families. J Mol Evol, 2002, 54: 322-332
[7] Lunn J E, Macrae E.New complexities in the synthesis of sucrose.Curr Opin Plant Biol, 2003, 6: 208-214
[8] Castleden C K, Aoki N, Gillespie V J, MacRae E A, Quick W P, Buchner P, Foyer C H, Furbank R T, Lunn J E. Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiol, 2004, 135: 1753-1764
[9] Grof C P L, So C T E, Perroux J M, Bonnett G, Forrester R I. The five families of sucrose-phosphate synthase genes inSaccharum spp. are differentially expressed in leaves and stem. Funct Plant Biol, 2006, 33: 605-610
[10] Sun J D, Zhang J S, Larue C T, Larue C T, Huber S C.Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis inArabidopsis null mutants of SPSA1. Plant, Cell & Environ, 2011, 34: 592-604
[11] Jiang J, Zhang Z, Cao J.Pollen wall development: the associated enzymes and metabolic pathways.Plant Biol, 2013, 15: 249-263
[12] Lin I W, Sosso D, Chen L Q, Gase K, Kim S G, Kessler D, Klinkenberg P M, Gorder M K, Hou B H, Qu X Q, Carter C J, Baldwin I T, Frommer W B.Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9.Nature, 2014, 508 : 546-549
[13] Chen S, HajirezaeI M, Börnke F. Differential expression of sucrose- phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves.Plant Physiol, 2005, 139: 1163-1174
[14] Park J Y, Canam T, Kang K Y, Ellis D D, Mansfild S D.Over-expression of an Arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development.Transgenic Res, 2008, 17: 181-192
[15] Huber S C.Role of sucrose-phosphate synthase in partitioning of carbon in leaves.Plant Physiol, 1983, 71: 818-821
[16] 刘凌霄, 沈法富, 卢合全, 韩庆点, 刘云国. 蔗糖代谢中蔗糖磷酸合成酶(SPS)的研究进展. 分子植物育种, 2005, 3: 275-281
Liu L X, Shen F F, Lu H Q, Han Q D, Liu Y G.Research Advance on sucrose phosphate synthase in sucrose metabolism.Mol Plant Breed, 2005, 3: 275-281 (in Chinese with English abstract)
[17] Baxter C J, Foyer C H, Turner J, Rolfe S A, Quick W P.Elevated sucrose phosphate synthase activity in transgenic tobacco sustains photosynthesis in old leaves and alters development.J Exp Bot, 2003, 54: 1813-1820
[18] Ishimaru K, Hirotsu N, Kashiwagi T, Madoka Y, Nagasuga K, Ono K, Ohsugi R.Over-expression of a maizeSPS gene improves yield characters of potato under field conditions. Plant Prod Sci, 2008, 11: 104-107
[19] Ohsugi R, Huber S C.Light modulation and localization of sucrose phosphate synthase activity between mesophyll cells and bundle sheath cells in C4 species.Plant Physiol, 1987, 84: 1096-1101
[20] Reimholz R, Geiger M, Haake V, Deiting U, Krause K P, Sonnewald U, Stitt M.Potato plants contain multiple forms of sucrose phosphate synthase, which differ in their tissue distributions, their levels during development, and their responses to low temperature. Plant, Cell & Environ, 1997, 20: 291-305
[21] Quick P, Siegl G, Neuhaus E, Feil R, Stitt M.Shortterm water stress leads to a stimulation of sucrose synthesis by activating sucrose-phosphate synthase.Planta, 1989, 177: 535-546
[22] Seneweera S P, Basra A S, Barlow E W, Conroy J P.Diurnal regulation of leaf blade elongation in rice by CO2 (Is it related to sucrose-phosphate synthase activity?).Plant Physiol, 1995, 108: 1471-1477
[23] Gibon Y, Bläsing O E, Palacios R N, Pankovic D,Hendriks J H M, Fisahn J, Höhne M, Gunther M, Stitt M. Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period.Plant J, 2004, 39: 847-862
[24] Okamura M, Aoki N, Hirose T, Yonekura M, Ohto C, Ohsugi R.Tissue specificity and diurnal change in gene expression of the sucrose phosphate synthase gene family in rice.Plant Sci, 2011, 181: 159-166
[25] Winter H, Huber S C.Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes.Crit Rev Biochem Mol Biol, 2000, 35: 253-289
[26] 唐湘如, 官春云. 施氮对油菜几种酶活性的影响及其与产量和品质的关系. 中国油料作物学报, 2001, 23(4): 32-37
Tang X R, Guan C Y.Chinese journal of oil crop sciences, Effect of N application on activities of several enzymes and trait of yield and quality in rapeseed cultivar Xiangyou No.13.Chin J Oil Crop Sci, 2001, 23(4): 32-37 (in Chinese)
[27] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S.MEGA6: Molecular evolutionary genetics analysis version 6.0.Mol Biol Evol, 2013, 30: 2725-2729
[28] Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal.Nucl Acids Res, 2012, 40: W597-W603
[29] Hu B, Jin J P, Guo A Y, Zhang H, Luo J H, Gao G.GSDS 2.0: an upgraded gene feature visualization server.Bioinformatics, 2015, 31: 1296-1297
[30] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S.MEME SUITE: tools for motif discovery and searching.Nucl Acids Res, 2009, 37: W202-W208
[31] Jones P, Binns D, Chang H Y, Fraser M, Li W Z, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn A F, Sangrador V A, Scheremetjew M, Yong S Y, Lopez R, Hunter S. InterProScan 5: genome-scale protein function classification.Bioinformatics, 2014, 30: 1236-1240
[32] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer Y V D, Rouzé P, Rombauts S. PlantCARE, a database of plantcis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res, 2002, 30: 325-327
[33] Rombauts S, Déhais P, Van M M, Rouzé P.PlantCARE, a plant cis-acting regulatory element database.Nucl Acids Res, 1999, 27: 295-296
[34] Wei L J, Jian H J, Lu K, Filardo F, Yin N W, Liu L Z, Qu C M, Li W, Du H, Li J N.Genome-wide association analysis and differential expression analysis of resistance toSclerotinia stem rot in Brassica napus. Plant Biotechnol J, 2016, 14: 1368-1380
[35] 李乐, 许红亮, 杨兴露, 李雅轩, 胡英考. 大豆LEA基因家族全基因组鉴定、分类和表达. 中国农业科学, 2011, 44: 3945-3954
Li L, Xu H L, Yang X L, Li Y X, Hu Y K, Genome-wide identification, classification and expression analysis ofLEA gene family in soybean. Sci Agric Sin, 2011, 44: 3945-3954 (in Chinese with English abstract)
[36] 王小非, 刘鑫, 苏玲, 孙永江, 张世忠, 郝玉金, 由春香. 番茄LBD基因家族的全基因组序列鉴定及其进化和表达分析. 中国农业科学, 2013, 46: 2501-2513
Wang X F, Liu X, Su L, Sun Y J, Zhang S Z, Hao Y J, You C X.Identification, evolution and expression analysis of the LBD gene family in tomato.Sci Agric Sin, 2013, 46: 2501-2513 (in Chinese with English abstract)
[37] 许园园, 蔺经, 李晓刚, 常有宏. 梨CBL基因家族全基因组序列的鉴定及非生物胁迫下的表达分析. 中国农业科学, 2015, 48: 735-747
Xu Y Y, Lin J, Li X G, Chang Y H.Identification and expression analysis under abiotic stresses of theCBL gene family in pear. Sci Agric Sin, 2015, 48: 735-747 (in Chinese with English abstract)
[38] Jian H J, Lu K, Yang B, Wang T Y, Zhang L, Zhang A X, Wang J, Liu L Z, Qu C M, Li J N.Genome-wide analysis and expression profiling of theSUC and SWEET gene families of sucrose transporters in oilseed rape(Brassica napus L.). Front Plant Sci, 2016, 7: 1464-1480
[39] Yoo M J, Ma T Y, Zhu N, Liu L H, Harmon A C, Wang Q M, Chen S X.Genome-wide identification and homeolog-specific expression analysis of theSnRK2 genes in Brassica napus guard cells. Plant Mol Biol, 2016, 91: 211-227
[40] He Y J, Mao S S, Gao Y L, Wu D M, Cui Y X, Li J N, Qian W.Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses inBrassica napus. PLoS One, 2016, 11: e0157558
[41] Dun X L, Shen W H, Hu K N, Zhou Z F, Xia S Q, Wen J, Yi B, Shen J X, Ma C Z, Tu J X, Fu T D, Lagercrantz U.Neofunctionalization of duplicatedTic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea lineages. Plant Physiol, 2014, 166: 1403-1419
[42] Lysak M A, Cheung K, Kitschke M, Bureš P.Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size.Plant Physiol, 2007, 145: 402-410
[43] Wang X W, Wang H Z, Wang J, Sun R F, Wu J, Liu S Y, Bai Y Q, Mun J H, Bancroft I, Cheng F, Huang S W, Li X X, Hua W, Wang J Y, Wang X Y, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Wesshaar B, Liu B H, Li B, Liu B, Tong C B, Song C, Duran C, Peng C F, Geng C Y, Koh C, Lin C Y, Edwards D, Mu D S, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King G J, Bommema G, Tang H B, Wang H P, Belcram H, Zhou H L, Hirakawa H, Abe H, Guo H, Wang H, Jin H Z, Parkin I A P, Batley J, Kim J S, Just J, Li J W, Xun J H, Deng J, Kim J A, Li J P, Yu J Y, Meng J L, Wang J P, Min J M, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M X, Jin M N, Ramchiary N, Drou N, Berkman P J, Cai Q L, Huang Q F, Li R Q, Tabata S, Cheng S F, Zhang S, Zhang S J, Huang S M, Sato S, Sun S L, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y R, Du Y C, Liao Y C, Lim Y, Narusaka Y, Wang Y P, Wang Z Y, Li Z Y, Wang Z W, Xiong Z Y, Zhang Z H. The genome of the mesopolyploid crop speciesBrassica rapa. Nat Genet, 2011, 43: 1035-1039
[44] Liu S Y, Liu Y M, Yang X H, Tong C B, Edwards D, Parkin I A.P., Zhao M X, Ma J X, Yu J Y, Huang S M, Wang X Y, Wang J Y, Lu K, Fang Z Y, Bancroft I, Yang T, Hu Q, Wang X F, Yue Z, Li H J, Yang L F, Wu J, Zhou Q, Wang W X, King G J, Pires J C, Lu C X, Wu Z Y, Sampath P, Wang Z, Guo H, Pan S K, Yang L M, Zhang D, Jin D C, Li W S, Belcram H, Tu J X, Guan M, Qi C K, Du D Z, Li J N, Jiang L C, Batley J, Sharpe A G, Park B, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C H, Wang L, Li J P, Hu Z Y, Zhuang M, Huang Y, Huang J Y, Shi J Q, Mei D S, Liu J, Lee T, Wang J P, Jin H Z, Li Z Y, Li X, Zhang J F, Xiao L, Zhou Y M, Liu Z S, Liu X Q, Qin R, Tang X, Liu W B, Wang Y P, Zhang Y Y, Lee J , Kim H H, Denoeud F, Xu X, Liang X M, Hua W, Wang X W, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploidy genomes. Nat Commun, 2014, 5: 3930
[45] Chalhoub B, Denoeud F, Liu S, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Corréa, Silva C D, Just J, Falentin C, Koh C S, Clainche I L, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Paslier M L, Fan G Y, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T, Thi V H D, Chalabi S, Hu Q, Fan C C, Tollenaere R, Lu Y H, Battail C, Shen J X, Sidebottom C H. D, Wang X F, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z S, Sun F M, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X W, Meng J L, Ma J X, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J, Adams K L, Batley J, Snowdon R J, Tost J, Ewards D, Zhou Y M, Hua W, Sharpe A G, Paterson A H, Guan C Y, Wincker P. Early allopolyploid evolution in the post-NeolithicBrassica napus oilseed genome. Science, 2014, 345: 950-953
[46] Xu G X, Guo C, Shan H Y, Kong H Z.Divergence of duplicate genes in exon-intron structure.Proc Natl Acad Sci USA, 2012, 109: 1187-1192
[47] Rogozin I B, Sverdlov A V, Babenko V N, Koonin E V.Analysis of evolution of exon-intron structure of eukaryotic genes.Briefings Bioinform, 2005, 6: 118-134
[48] Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P.The role of aquaporins in cellular and whole plant water balance.Biochim Biophys Acta, 2000, 1465: 324-342
[49] Volkert K, Debast S, Voll L M, Voll H, Schießl I, Hofmann J, Schneider S, Börnke F.Loss of the two major leaf isoforms of sucrose-phosphate synthase inArabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis. J Exp Bot, 2014, 65: 5217-5229
[50] Hirose T, Hashida Y, Aoki N, Okamura M, Yonekura M, Ohto C, Terao T, Ohsugi R.Analysis of gene-disruption mutants of a sucrose phosphate synthase gene in rise,OsSPS1, shows the importance of sucrose synthesis in pollen germination. Plant Sci, 2014, 225: 102-106
[51] Chen S, Hajirezaei M, Börnke F.Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves.Plant Physiol, 2005, 139: 1163-1174
[52] Lu K, Xiao Z C, Jian H J, Peng L, Qu C M, Fu M L, He B, Tie L M, Liang Y, Xu X F, Li J N.A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits inBrassica napus. Sci Rep, 2016, 6: 36452
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[7] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[8] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[9] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[10] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[11] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[12] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[13] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[14] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[15] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!