欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (03): 405-413.doi: 10.3724/SP.J.1006.2018.00405

• 耕作栽培·生理生化 • 上一篇    下一篇

不同氮敏感性粳稻品种的氮代谢与光合特性比较

剧成欣1,2(), 周著彪1, 赵步洪2, 王志琴1, 杨建昌1,*()   

  1. 1扬州大学江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
    2江苏里下河地区农业科学研究所, 江苏扬州 225007
  • 收稿日期:2017-08-28 接受日期:2017-11-21 出版日期:2018-03-12 网络出版日期:2017-12-18
  • 通讯作者: 杨建昌
  • 作者简介:

    cxju1124@163.com

  • 基金资助:
    本研究由国家自然科学基金项目(31461143015, 31471438, 31471447), 国家科技支撑计划项目(2014AA10A605), 国家重点研发计划项目(2016YFD0300206-4), 江苏高校优势学科建设工程项目(PAPD)和扬州大学高端人才支持计划项目(2015-1)资助

Comparison in Nitrogen Metabolism and Photosynthetic Characteristics between Japonica Rice Varieties Differing in Nitrogen Sensitivity

Cheng-Xin JU1,2(), Zhu-Biao ZHOU1, Bu-Hong ZHAO2, Zhi-Qin WANG1, Jian-Chang YANG1,*()   

  1. 1 Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2 Lixiahe Region Agricultural Research Institute, Yangzhou 225007, Jiangsu, China
  • Received:2017-08-28 Accepted:2017-11-21 Published:2018-03-12 Published online:2017-12-18
  • Contact: Jian-Chang YANG
  • Supported by:
    This study was supported the National Natural Science Foundation of China (31461143015, 31471438, 31471447), the National Key Technology Support Program of China (2014AA10A605), the National Key Research and Development Support Program of China (2016YFD0300206-4), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Top Talent Supporting Program of Yangzhou University (2015-01).

摘要:

本文旨在探明不同氮敏感性粳稻品种氮代谢与光合特性。以2个氮敏感高产品种淮稻5号和连粳7号, 2个氮钝感品种宁粳1号和扬粳4038为材料, 设置0和200 kg hm-2 2个施氮水平, 研究其产量、氮肥利用效率以及地上部生理性状的变化特点。结果表明, 在2种施氮水平下, 氮敏感品种的产量和氮肥利用效率显著高于氮钝感品种。与氮钝感品种相比, 氮敏感品种具有较高的光合速率和氮素积累, 较强的氮代谢酶活性和较高的光合氮素利用效率, 抽穗期茎叶中积累较多的可溶性糖和淀粉, 抽穗至成熟期茎鞘中非结构性碳水化合物向籽粒转运率较高。表明氮敏感品种在较低施氮量下具有较高的生理活性和物质生产效率; 这些特征可作为筛选高产氮敏感水稻品种的重要生理指标。

关键词: 水稻, 氮敏感性, 产量, 氮肥利用效率, 生理性状

Abstract:

Understanding the physiological characters associated with nitrogen (N) use efficiency (NUE) is very important in selecting and breeding N-efficient varieties. However, the information on such characters is very limited. Four japonica rice varieties, i.e., two nitrogen sensitive varieties, Huaidao 5 (HD-5) and Lianjing 7 (LJ-7), two nitrogen insensitive varieties, Ningjing 1 (NJ-1) and Yangjing 4038 (YJ-4), were grown in the field, and two N rates, 0 and 200 kg ha-1, were applied during the growing season. The yield components, NUE and aboveground physiological characters were investigated. The nitrogen sensitive varieties produced higher grain yield, exhibited higher NUE than nitrogen insensitive varieties at N rates of 0 and 200 kg ha-1. When compared with the nitrogen insensitive varieties, the nitrogen sensitive varieties had a higher photosynthetic rate and N accumulation, stronger activity of the enzymes involved in N metabolism, higher photosynthetic NUE, more accumulation of soluble sugars and starch in stems and sheaths at heading time, and more remobilization of nonstructural carbohydrate from stems to grains during grain filling. These physiological traits resulting in higher grain yield and nitrogen use efficiency are important and can be used as physiological indexes to select and breed high-yielding and N-sensitive rice varieties.

Key words: rice, nitrogen sensitivity, grain yield, nitrogen use efficiency, physiological characteristics

表1

不同水稻品种产量及其构成因素"

年份
Year
施氮量
N rate
品种
Cultivar
产量
Yield
(t hm-2)
穗数
No. of panicles
(×104 hm-2)
穗粒数
Spikelets
per panicle
结实率
Seed setting rate
(%)
粒重
Grain weight
(mg)
2015 0 kg hm-2 淮稻5号 HD-5 5.59 a 202 a 105 b 93.4 a 26.8 a
连粳7号 LJ-7 5.61 a 204 a 112 a 92.7 a 27.1 b
宁粳1号 NJ-1 5.20 b 196 ab 102 c 92.5 a 28.3 a
扬粳4038 YJ-4 5.22 b 190 b 107 b 89.4 b 26.3 c
200 kg hm-2 淮稻5号 HD-5 9.51 a 297 a 126 b 91.7 a 28.5 a
连粳7号 LJ-7 9.48 a 288 b 136 a 91.8 a 26.8 b
宁粳1号 NJ-1 8.69 b 289 b 118 c 90.5 a 28.2 a
扬粳4038 YJ-4 8.52 b 285 b 129 b 87.5 b 26.2 c
2016 0 kg hm-2 淮稻5号 HD-5 6.29 a 208 a 124 b 88.0 a 27.7 b
连粳7号 LJ-7 6.24 a 205 a 133 a 86.5 a 26.4 c
宁粳1号 NJ-1 5.62 b 210 a 107 c 87.0 a 28.8 a
扬粳4038 YJ-4 5.79 b 177 b 142 a 87.1 a 26.4 c
200 kg hm-2 淮稻5号 HD-5 9.24 a 232 b 173 a 83.7 a 27.5 b
连粳7号 LJ-7 9.30 a 263 a 165 a 81.5 b 26.3 c
宁粳1号 NJ-1 8.25 b 233 b 147 b 85.1 a 28.3 a
扬粳4038 YJ-4 8.47 b 220 b 175 a 84.6 a 26.0 c

表2

不同水稻品种氮肥利用效率"

年份
Year
品种
Cultivar
吸收效率
RE (%)
农学利用效率
AE (kg kg-1)
生理利用效率
PE (kg kg-1)
氮肥偏生产力
PFP (kg kg-1)
2015 淮稻5号 HD-5 42.8 a 19.6 a 45.8 a 47.6 a
连粳7号 LJ-7 41.9 a 19.4 a 46.3 a 47.4 a
宁粳1号 NJ-1 39.5 b 17.5 b 44.3 b 43.1 b
扬粳4038 YJ-4 38.0 b 16.5 b 43.4 b 42.6 b
2016 淮稻5号 HD-5 41.2 a 14.8 a 35.9 a 46.2 a
连粳7号 LJ-7 41.6 a 15.4 a 37.0 a 46.5 a
宁粳1号 NJ-1 38.2 b 13.1 b 34.2 b 41.3 b
扬粳4038 YJ-4 39.7 b 13.5 b 34.0 b 42.4 b

图1

不同水稻品种在0N(A)和200 kg N hm-2(B)处理下的叶片光合速率 PI: 穗分化始期; HD: 抽穗期; DAH10: 抽穗后10 d; DAH20: 抽穗后20 d; DAH30: 抽穗后30 d; HD-5: 淮稻5号; LJ-7: 连粳7号; NJ-1: 宁粳1号; YJ-4: 扬粳4038。"

图2

不同水稻品种在0N (A)和200 kg N hm-2(B)处理下的氮素积累量 MT: 分蘖中期; PI: 穗分化始期; HD: 抽穗期; MA: 成熟期; HD-5: 淮稻5号; LJ-7: 连粳7号; NJ-1: 宁粳1号; YJ-4: 扬粳4038。"

图3

不同水稻品种在0N(A)和200 kg N hm-2(B)处理下的氮素阶段积累量 TS: 移栽期; MT: 分蘖中期; PI: 穗分化始期; HD: 抽穗期; MA: 成熟期; HD-5: 淮稻5号; LJ-7: 连粳7号; NJ-1: 宁粳1号; YJ-4: 扬粳4038。"

表3

不同水稻品种氮代谢关键酶活性"

施氮量
N rate
品种
Cultivar
硝酸还原酶
NR (μg NO-2 h-1 g-1 FW)
谷氨酰胺合成酶
GS (μmol h-1 g-1 FW)
谷氨酸合酶
GOGAT (μmol h-1 g-1 FW)
PI HD PI HD PI HD
0 kg hm-2 淮稻5号 HD-5 86.7 a 45.2 a 110.2 a 126.7 a 21.9 a 30.3 a
连粳7号 LJ-7 89.2 a 47.2 a 103.2 a 132.6 a 20.6 a 29.9 a
宁粳1号 NJ-1 60.7 b 28.0 b 74.7 b 105.0 b 16.4 b 22.5 b
扬粳4038 YJ-4 62.3 b 25.4 b 70.1 b 99.5 b 18.2 ab 23.2 b
200 kg hm-2 淮稻5号 HD-5 91.7 a 95.5 a 136.8 a 220.8 a 30.3 a 32.0 a
连粳7号 LJ-7 93.5 a 88.7 a 143.0 a 215.5 a 31.0 a 33.2 a
宁粳1号 NJ-1 89.1 ab 49.4 b 105.7 b 216.1 a 26.7 b 29.5 a
扬粳4038 YJ-4 86.2 b 54.4 b 111.2 b 210.9 a 25.8 b 30.4 a

表4

不同水稻品种的叶片氮含量、比叶氮含量和光合氮素利用效率"

施氮量
N rate
品种
Cultivar
叶片含氮量
LNC (mg kg-1)
比叶氮含量
SLNC (g cm-2)
光合氮素利用效率
PUNE (μmol g-1 s-1)
0 kg hm-2 淮稻5号 HD-5 19.20 a 1.62 a 12.02 a
连粳7号 LJ-7 19.33 a 1.70 a 11.76 a
宁粳1号 NJ-1 18.87 b 1.31 b 10.29 c
扬粳4038 YJ-4 19.03 a 1.42 b 10.99 b
200 kg hm-2 淮稻5号 HD-5 22.13 c 3.12 a 8.40 a
连粳7号 LJ-7 24.93 a 3.24 a 8.24 a
宁粳1号 NJ-1 22.40 c 2.89 b 7.72 b
扬粳4038 YJ-4 23.10 b 2.85 b 7.65 b

表5

不同水稻品种茎鞘中可溶性糖、蔗糖和淀粉含量"

施氮量
N rate
品种
Cultivar
可溶性糖
Soluble sugar (mg g-1 DW)
蔗糖
Sucrose (mg g-1 DW)
淀粉
Starch (mg g-1 DW)
HD MA HD MA HD MA
0 kg hm-2 淮稻5号 HD-5 125.1 a 34.3 a 94.7 a 24.9 a 73.7 a 26.3 a
连粳7号 LJ-7 123.5 ab 34.0 a 93.7 a 24.5 a 72.6 a 25.5 ab
宁粳1号 NJ-1 118.9 b 35.8 a 90.7 b 26.0 a 70.0 b 25.1 b
扬粳4038 YJ-4 115.4 b 34.9 a 89.2 b 25.6 a 68.6 b 26.4 a
200 kg hm-2 淮稻5号 HD-5 177.6 a 68.1 a 136.8 a 46.4 a 101.5 a 50.8 ab
连粳7号 LJ-7 175.8 a 67.7 a 135.6 a 45.4 a 100.2 a 50.2 ab
宁粳1号 NJ-1 166.8 b 69.4 a 130.1 b 45.9 a 92.3 b 51.6 a
扬粳4038 YJ-4 164.3 b 68.9 a 129.3 b 46.2 a 91.3 b 49.9 b

表6

不同水稻品种非结构性碳水化合物的运转"

施氮量
N rate
品种
Cultivar
抽穗期
HD (mg g-1 DW)
成熟期
MA (mg g-1 DW)
运转率
Remobilization (%)
0 kg hm-2 淮稻5号 HD-5 198.9 a 60.5 a 69.58 a
连粳7号 LJ-7 196.2 a 59.6 a 69.62 a
宁粳1号 NJ-1 188.9 b 62.9 a 66.70 b
扬粳4038 YJ-4 184.1 b 61.3 a 66.70 b
200 kg hm-2 淮稻5号 HD-5 279.1 a 118.9 a 57.40 a
连粳7号 LJ-7 276.0 a 117.8 a 57.32 a
宁粳1号 NJ-1 258.9 b 121.1 a 53.23 b
扬粳4038 YJ-4 255.6 b 118.8 a 53.52 b
[1] FAOSTAT.FAO Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations, Rome, 2016.
[2] Normile D.Reinventing rice to feed the world.Science, 2008, 321: 330-333
[3] Kant S, Bi Y M, Rothstein S J.Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.J Exp Bot, 2011, 62: 1490-1509
[4] Haegele J W, Cook K A, Nichols D M, Below F E.Changes in nitrogen use traits associated with genetic improvement for grain yield of maize hybrids released in different decades.Crop Sci, 2013, 53: 1256-1268
[5] Ju C X, Roland J B, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H.Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application.Field Crops Res, 2015, 175: 47-55
[6] 黄元财, 王术, 吴晓冬, 王祥九, 刘向英, 王德伟. 肥水条件对不同类型水稻干物质积累与分配的影响. 沈阳农业大学学报, 2004, 35: 346-349
Huang Y C, Wang S, Wu X D, Wang X J, Liu X Y, Wang D W.Effect of fertilizer and water conditions on dry matter accumulation and partition of different types of rice.J Shenyang Agric Univ, 2004, 35: 346-349 (in Chinese with English abstract)
[7] 霍中洋, 姚义, 张洪程, 夏炎, 倪晓诚, 戴其根, 许轲, 魏海燕. 播期对直播稻光合物质生产特征的影响. 中国农业科学, 2012, 45: 2592-2606
Huo Z Y, Yao Y, Zhang H C, Xia Y, Ni X C, Dai Q G, Xu K, Wei H Y.Effect of sowing date on characteristics of photosynthesis and matter production of direct seeding rice.Sci Agric Sin, 2012, 45: 2592-2606 (in Chinese with English abstract)
[8] 董桂春, 王熠, 于小凤, 周娟, 彭斌, 李进前, 田昊, 张燕, 袁秋梅, 王余龙. 不同生育期水稻品种氮素吸收利用的差异. 中国农业科学, 2011, 44: 4570-4582
Dong G C, Wang Y, Yu X F, Zhou J, Peng B, Li J Q, Tian H, Zhang Y, Yuan Q M, Wang Y L.Differences of nitrogen uptake and utilization of conventional rice varieties with different growth duration.Sci Agric Sin, 2011, 44: 4570-4582 (in Chinese with English abstract)
[9] 张岳芳, 王余龙, 张传胜, 董桂春, 杨连新, 黄建晔, 陈培峰, 龚克成.籼稻品种的氮素累积量与根系性状的关系. 作物学报, 2006, 32: 1121-1129
Zhang Y F, Wang Y L, Zhang C S, Dong G C, Yang L X, Huang J Y, Chen P F, Gong K C.Relationship between N accumulation and root traits in conventional indica rice varieties(Oryza sativa L.). Acta Agron Sin, 2006, 32: 1121-1129 (in Chinese with English abstract)
[10] 于小凤, 王坚纲, 李进前, 王熠, 袁秋梅, 仲军, 陈琛, 田昊, 张燕, 黄建晔, 王余龙, 董桂春. 不同氮素吸收类型梗稻品种吸氮能力的差异及原因分析. 中国水稻科学, 2012, 26: 331-340
Yu X F, Wang J G, Li J Q, Wang Y, Yuan Q M, Zhong J, Chen C, Tian H, Zhang Y, Huang J Y, Wang Y L, Dong G C.Difference in nitrogen absorption ability and its reason in conventional japonica rice cultivars with different nitrogen uptake efficiencies. Chin J Rice Sci, 2012, 26: 331-340 (in Chinese with English abstract)
[11] 熊洁. 水稻源库结构、稻米品质以及对氮响应的基因型差异.南京农业大学博士学位论文, 江苏南京, 2011
Xiong J.The Genetic Differences in Source-sink Structure, Rice Quality and Responses to Nitrogen. PhD Dissertation of Nanjing Agricultural University. Nanjing,China, 2011
[12] 陈琛. 氮高效吸收高产类型遗传群体水稻株系的基本特点. 扬州大学博士学位论文, 江苏扬州, 2016
Chen C.Basic Characteristics of Nitrogen Efficient Absorption and High Yield Rice in Genetic Populations. PhD Dissertation of Yangzhou University. Yangzhou,China, 2016
[13] 剧成欣, 陶进, 钱夕旸, 顾骏飞, 张耗, 赵步洪, 王志琴, 杨建昌. 不同年代中籼水稻品种的叶片光合性状. 作物学报, 2016, 42: 415-426
Ju C X, Tao J, Qian X Y, Gu J F, Zhang H, Zhao B H, Wang Z Q, Yang J C.Leaf photosynthetic characteristics of mid-season indica rice varieties applied at different decades. Acta Agron Sin, 2016, 42: 415-426 (in Chinese with English abstract)
[14] Gu J F, Yin X Y, Paul C S, Tjeerd J S, Wang H Q.Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. J Exp Bot, 2012, 63: 455-469
[15] 陈露, 张伟杨, 王志琴, 张耗, 刘立军, 杨建昌. 施氮量对江苏不同年代中粳稻品种产量与群体质量的影响. 作物学报, 2014, 40: 1412-1423
Chen L, Zhang W Y, Wang Z Q, Zhang H, Liu L J, Yang J C.Effect of nitrogen application rate on grain yield and population quality of mid-season japonica rice cultivars at different decades in Jiangsu province. Acta Agron Sin, 2014, 40: 1412-1423 (in Chinese with English abstract)
[16] 赵全志, 陈静蕊, 刘辉, 乔江方, 高桐梅, 杨海霞, 王继红. 水稻氮素同化关键酶活性与叶色变化的关系. 中国农业科学, 2008, 41: 2607-2616
Zhao Q Z, Chen J R, Liu H, Qiao J F, Gao T M, Yang H X, Wang J H.Relationship between activities of nitrogen assimilation enzymes and leaf color of rice.Sci Agric Sin, 2008, 41: 2607-2616. (in Chinese with English abstract)
[17] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 125-127
Li H S.Principle and Technology of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 125-127 (in Chinese)
[18] 陈露. 江苏不同年代中粳稻品种对施氮量的响应及其生理机制. 扬州大学硕士学位论文, 江苏扬州, 2014
Chen L.Response of the Mid-season Japonica Rice Cultivars Applied at Different Decades in Jiangsu to Nitrogen Rates and Its Physiological Mechanism. MS Thesis of Yangzhou University. Yangzhou, Jiangsu,China, 2014
[19] Yoshida S, Forno D, Cock J, Gomez K.Determination of sugar and starch in plant tissue. In: Yoshida S. ed. Laboratory Manual for Physiological Studies of Rice. The International Rice Research Institute, Philippines, 1976. pp: 46-49
[20] Somogyi M.A new reagent for the determination of sugars.J Biol Chem, 1945, 160: 61-68
[21] Pucher G W, Leavenworth C S, Vickery H B.Determination of starch in plant tissues.Anal Chem, 1948, 20: 850-853
[22] 赵黎明, 李明, 郑殿峰, 顾春梅, 那永光, 解保胜. 水稻光合作用研究进展及其影响因素分析. 北方水稻, 2014, 44(5): 66-71
Zhao L M, Li M, Zheng D F, Gu C M, Na Y G, Xie B S.Analysis of the factors and their effect on the photosynthesis of rice.North Rice, 2014, 44(5): 66-71 (in Chinese with English abstract)
[23] 邓启云, 袁隆平, 蔡义东, 刘建丰, 赵炳然, 陈立云. 超级杂交稻模式株型的光合优势. 作物学报, 2006, 32: 1287-1293
Deng Q Y, Yuan L P, Cai Y D, Liu J F, Zhao B R, Chen L Y.Photosynthetic advantages of model plant-type in super hybrid rice.Acta Agron Sin, 2006, 32: 1287-1293 (in Chinese with English abstract)
[24] 许明, 贾德涛, 马殿荣, 王嘉宇, 苗微, 陈温福. 北方超级粳稻根系生理、叶片光合性能特点及其相互关系. 作物学报, 2010, 36: 1030-1036
Xu M, Jia D T, Ma D R, Wang J Y, Miao W, Chen W F.Correlation of root physiology and leaf photosynthesis characteristics in northern Chinese japonica super rice. Acta Agron Sin, 2010, 36: 1030-1036 (in Chinese with English abstract)
[25] Yang C M, Yang L Z, Yang Y X, Zhu O Y.Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils.Agric Water Manag, 2004, 70: 67-81
[26] Osaki M, Shinano T, Matsumoto M, Zheng T G, Tadano T.A root-shoot interaction hypothesis for high productivity of field crops.Soil Sci Plant Nutr, 1997, 43: 1079-1084
[27] Inthapanya P, Sipaseuth, Sihavong P, Sihathep V, Chanphengsay M, Fukai S, Basnayake J. Genotypic performance under fertilized and non-fertilized conditions in rained lowland rice.Field Crops Res, 2000, 65: 1-14
[28] 董桂春, 陈琛, 袁秋梅, 羊彬, 朱正康, 曹文雅, 仲军, 周娟, 罗刚, 王熠, 黄建晔, 王余龙. 氮肥处理对氮素高效吸收水稻根系性状及氮肥利用率的影响. 生态学报, 2016, 36: 642-651
Dong G C, Chen C, Yuan Q M, Yang B, Zhu Z K, Cao W Y, Zhong J, Zhou J, Luo G, Wang Y, Huang J Y, Wang Y L.The effect of nitrogen fertilizer treatments on root traits and nitrogen use efficiency in indica rice varieties with high nitrogen absorption efficiency. Acta Ecol Sin, 2016, 36: 642-651 (in Chinese with English abstract)
[29] 董桂春, 王余龙, 周娟, 张彪, 张传胜, 张岳芳, 杨连新, 黄建晔. 不同氮素籽粒生产效率类型籼稻品种氮素分配与运转的差异. 作物学报, 2009, 35: 149-155
Dong G C, Wang Y L, Zhou J, Zhang B, Zhang C S, Zhang Y F, Yang L X, Huang J Y.Difference of nitrogen accumulation and translocation in conventional indica rice cultivars with different nitrogen use efficiency for grain output. Acta Agron Sin, 2009, 35: 149-155 (in Chinese with English abstract)
[30] Fageria N K.Yield physiology of rice. J Plant Nutr, 2007, 30: 843-879
[31] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H.Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice.Field Crops Res, 2009, 113: 31-40
[32] 莫良玉, 吴良欢, 陶勤南. 高等植物GS/GOGAT循环研究进展. 植物营养与肥料学报, 2001, 7: 223-231
Mo L Y, Wu L H, Tao Q N.Research advances on GS/GOGAT cycle in higher plants.Plant Nutr Fert Sci, 2001, 7: 223-231 (in Chinese with English abstract)
[33] 王小纯, 熊淑萍, 马新明, 张娟娟, 王志强. 不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响. 生态学报, 2005, 25: 802-807
Wang X C, Xiong S P, Ma X M, Zhang J J, Wang Z Q.Effect of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in specialty wheat cultivars.Acta Ecol Sin, 2005, 25: 802-807 (in Chinese with English abstract)
[34] Pang J Y, Palta J A, Rebetzke G J, Milroy S P.Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth.Func Plant Biol, 2014, 41: 215-222
[35] 王维. 适度土壤干旱对稻麦碳氮营养运转的调节作用及其机理. 扬州大学博士学位论文, 江苏扬州, 2003
Wang W.Soil Drying in Regulation to the Remobilization of Carbon and Nitrogen Reserves During Grain-filling Period of Wheat and Rice and Its Physiological Mechanism. PhD Dissertation of Yangzhou University, Yangzhou,China, 2003
[36] Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M.Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in new plant type of tropical rice lines.J Plant Nutr, 2005, 28: 835-850
[37] Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M.Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines.Soil Sci Plant Nutr, 2004, 50: 545-554
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[14] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[15] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!