欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (05): 762-773.doi: 10.3724/SP.J.1006.2018.00762

• 耕作栽培·生理生化 • 上一篇    下一篇

基于GF-1卫星遥感数据识别京津冀冬小麦面积

王利民*(), 刘佳, 杨福刚, 杨玲波, 姚保民, 王小龙   

  1. 中国农业科学院农业资源与农业区划研究所, 北京100081
  • 收稿日期:2017-06-14 接受日期:2018-01-08 出版日期:2018-05-20 网络出版日期:2018-01-26
  • 通讯作者: 王利民
  • 作者简介:

    第一作者联系方式: E-mail: jaasyang@163.com, Tel: 025-58731165

  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300603)资助

Acguisition of Winter Wheat Area in the Beijing-Tianjin-Hebei Region with GF-1 Satellite Data

Li-Min WANG*(), Jia LIU, Fu-Gang YANG, Ling-Bo YANG, Bao-Min YAO, Xiao-Long WANG   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2017-06-14 Accepted:2018-01-08 Published:2018-05-20 Published online:2018-01-26
  • Contact: Li-Min WANG
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2016YFD0300603).

摘要:

省级尺度冬小麦面积的精准获取技术是农作物面积遥感监测研究的主要内容之一。为了获取省级尺度的冬小麦种植面积, 该文以北京市(京)、天津市(津)和河北省(冀) 3个省域范围为例, 以国家标准地形图分幅为分类的图幅单元, 利用国产GF-1/WFV数据, 构建冬小麦面积指数, 实现了省级尺度冬小麦面积的识别。本文以冬小麦全部9个月生育期的984景影像作为数据源, 依次经过数据预处理、标准图幅单元的NDVI合成、样本点选择、冬小麦面积指数构建、冬小麦作物类型确认、省域范围制图及精度验证等步骤完成研究区域内冬小麦面积的提取。采用区域网平差和6S大气校正算法对数据源预处理, 以中国1︰10万标准地形图分幅为分类图幅单元构建冬小麦面积指数, 将冬小麦面积指数按照1%的比例等分, 并将面积指数从0到100%分割为101个提取节点, 将提取节点的NDVI值依次与类型确认样本比较, 精度最高的则确认为冬小麦面积提取阈值, 同时将该阈值应用于图幅单元内冬小麦面积指数影像, 获取冬小麦种植分布。最后冬小麦面积识别的精度表明, 以标准地图分幅作为计算单元, 在GF-1影像基础上, 利用冬小麦面积指数能够显著提高冬小麦与其他地物类型的波谱差异, 且冬小麦的总体识别精度达到89.6%, 用户精度达到89.8%, 制图精度96.5%, Kappa系数0.72。在典型区域, 本文算法与监督分类算法精度结果较为一致, 除制图精度相差4.77%外, 总体精度与用户精度差都在1.00%以内, 说明本文算法具有精度高、运行效率高、分类单元识别结果一致性强的特点, 能够满足省级尺度农情遥感业务监测的需要。

关键词: GF-1卫星, 区域尺度, 冬小麦, 面积指数, 遥感监测

Abstract:

Winter wheat area accurate acquisition at provincial scale is an important aspect in remote-sensing monitoring of crop area. This study aimed at estimating winter wheat area in Beijing, Tianjin, and Hebei at provincial scale using classification map units from the national standard topographic map and the winter wheat area index (WWAI) created from the wide field view (WFV) data of GF-1 satellite. A total of 984 satellite monitoring images between October 1, 2013 and June 30, 2014 were used as data sources. The major process steps were data preprocessing, NDVI synthesis of standard map units, selection of samples, creation of winter wheat area index, confirmation of winter wheat crop type, provincial scale mapping, and accuracy verification. Multi-temporal GF-1/WFV data were preprocessed and NDVI value of images were calculated by using block adjustment and 6S atmospheric correction algorithm. By means of the 1:100 000 national standard topographic map framings of China, as the classification map units, WWAI was equally divided at a proportion of 1 percent into 101 extraction nodes from 0 to 100%. The NDVI values of extraction nodes were compared with type confirmation samples, and the most accurate NDVI was adopted as the extraction threshold value of winter wheat area. This threshold was then used into WWAI image in the map units to obtain winter wheat planting distribution. The identification result showed that, by taking standard map framing as calculation units and based on the creation of WWAI of GF-1 images, we remarkably improved the wave spectrum difference between winter wheat and other ground objects, with the overall accuracy of 89.6%, user accuracy of 89.8%, mapping accuracy of 96.5%, and Kappa coefficient of 0.72. In a typical region, the algorithm proposed had a similar accuracy with supervised classification algorithm. Except for 4.77% of the difference in mapping accuracy, the differences in overall accuracy and user accuracy were less than 1.00%. These results indicate that the used in this study is of algorithm high accuracy, efficiency and consistency in classification unit identification and applicable in agricultural monitoring at provincial level.

Key words: GF-1 satellite, region scale, winter wheat, area index, remote sensing

图1

京津冀地区小麦区划"

图2

研究区冬小麦遥感监测图幅单元分布及高分影像示例 A: 京津冀WFV晴空影像及图幅单元分布; B: 廊坊市所在图幅单元WFV晴空影像; C: 廊坊市所在图幅单元4月份NDVI最大值合成"

图3

研究区样本点及示例图幅的分布 A: 权值构建样本; B: 类型确认样本; C: 规则验证样本; D: 随机验证样本。"

图4

监督分类方案实施区域(图幅编号J50D006006)与样本分布"

图5

冬小麦面积提取处理流程"

图6

基于影像数据(A)和地面观测数据(B)的冬小麦和其他地物类型NDVI曲线"

表 1

NDVI均值结果与冬小麦面积指数的比较"

地表物
Ground objective
NDVI平均值
Average NDVI
冬小麦面积指数
Winter wheat area index
冬小麦 Winter wheat 0.4250 0.3489
其他地表物 Other ground objectives 0.2624 0.1298
差异绝对值 Difference value 0.1626 0.2191
差异倍数 Difference multiple 1.62 2.69

图7

不同地理位置冬小麦面积指数(A)及分类结果(B) A1B1: 保定市(J50D003004); A2B2: 沧州市(J50D006006); A3B3: 邯郸市(J50D011002); A4B4: 唐山市(J50D002010); A5B5: 邢台市(J50D008002)。"

表 2

冬小麦提取结果验证样本点混淆矩阵"

地表物
Ground objective
冬小麦
Winter wheat
其他地表物
Other ground objectives
总计
Total
用户精度
User accuracy (%)
制图精度
Mapping
accuracy (%)
总体精度
Overall
accuracy (%)
Kappa系数
Kappa
coefficient
冬小麦
Winter wheat
1033 37 1070 89.8 96.5 89.6 0.72
其他地表物
Other ground objectives
117 292 409 88.8 71.4
总计
Total
1150 329 1479

图8

本研究区2013-2014年度冬小麦种植空间分布"

图9

图幅编号J50D006006区域冬小麦监督结果"

表3

监督分类方案与WWAI算法精度比较"

指标
Index
最大似然监督分类 Maximum likelihood 冬小麦面积指数 Winter wheat area index
冬小麦
Winter wheat
其他地表物
Other ground objectives
冬小麦
Winter wheat
其他地表物
Other ground objectives
用户精度 User accuracy (%) 87.88 95.24 87.35 93.08
制图精度 Mapping accuracy (%) 95.11 88.18 90.34 90.85
总体精度 Overall accuracy (%) 91.46 90.64
Kappa系数 Kappa coefficient 0.83 0.81
[1] 吴炳方. 中国农情遥感速报系统. 遥感学报, 2004, 8: 481-497
doi: 10.11834/jrs.20040601
Wu B F.China crop watch system with remote sensing.J Remote Sens, 2004, 8: 481-497 (in Chinese with English abstract)
doi: 10.11834/jrs.20040601
[2] 中华人民共和国统计局. 中国统计年鉴2017 (12-8 农作物播种面积). 北京: 中国统计出版社, 2017
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 2017 (12-8 Sown areas of farm crops). Beijing: China Statistics Press, 2017 (in Chinese with English abstract)
[3] 杨邦杰, 裴志远. 国家级农情遥感监测系统的研究开发与运行. 农业工程学报, 2003, 19(增刊): 11-14
Yang B J, Pei Z Y.National agricultural condition monitoring system based on satellite remote sensing: development, application and improvement.Trans CSAE, 2003, 19(suppl): 11-14 (in Chinese with English abstract)
[4] Tarko A, De Bruin S, Fasbender D, Bregt A.Users’ assessment of orthoimage photometric quality for visual interpretation of agricultural fields. Remote Sens, 2015, 7: 4919-4936
doi: 10.3390/rs70404919
[5] Khatami R, mountrakis G, Stehman S V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: general guidelines for practitioners and future research.Remote Sens Environ, 2016, 177: 89-100
doi: 10.1016/j.rse.2016.02.028
[6] Löw F, Duveiller G.Determining suitable image resolutions for accurate supervised crop classification using remote sensing data. In: Proceedings of the SPIE, Vol. 8893: Earth Resources and Environmental Remote Sensing/GIS Applications IV, Dresden, Germany, 2013. pp 909-927
[7] Lewiński S A.Object-oriented classification of Landsat ETM+ satellite image. J Water & Land Develop, 2007, 10: 91-106
doi: 10.2478/v10025-007-0008-4
[8] Kumar P, Gupta D K, Mishra V N, Prasad R.Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data.Int J Remote Sens, 2015, 36: 1604-1617
doi: 10.1080/2150704X.2015.1019015
[9] Li J, Zhao G X, Yang P G.Knowledge-based land use/cover classification of remote sensing image in Kenli, Shandong Province, China.Chin Sci Bull, 2006, 51: 218-224
doi: 10.1007/s11434-006-8210-3
[10] 李霞, 王飞, 徐德斌, 刘清旺. 基于混合像元分解提取大豆种植面积的应用探讨. 农业工程学报, 2008, 24(1): 213-217
Li X, Wang F, Xu D B, Liu Q W.Application research on the method for extracting soybean covered areas based on the pixel unmixing.Trans CSAE, 2008, 24(1): 213-217 (in Chinese with English abstract)
[11] 张建国, 李宪文, 吴延磊. 面向对象的冬小麦种植面积遥感估算研究. 农业工程学报, 2008, 24(5): 156-160
Zhang J G, Li X W, Wu Y L.Object oriented estimation of winter wheat planting area using remote sensing data.Trans CSAE, 2008, 24(5): 156-160 (in Chinese with English abstract)
[12] Lennington R K, Sorensen C T, Heydorn R P.A mixture model approach for estimating crop areas from Landsat data.Remote Sens Environ, 1984, 14: 197-206
doi: 10.1016/0034-4257(84)90015-4
[13] Chellasamy M, Ferré T P A, Greeve M H. Automatic training sample selection for a multi-evidence based crop classification approach. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 7th edn., Vol. 40, 2014. pp 63-69
[14] 王利民, 刘佳, 高建孟, 杨玲波, 杨福刚, 王小龙. 冬小麦面积遥感识别精度与空间分辨率关系. 农业工程学报, 2016, 32(23): 152-160
doi: 10.11975/j.issn.1002-6819.2016.23.021
Wang L M, Liu J, Gao J M, Yang L B, Yang F G, Wang X L.Relationship between accuracy of winter wheat area remote sensing identification and spatial resolution. Trans CSAE, 2016, 32(23): 152-160 (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2016.23.021
[15] 李颖, 陈秀万, 段红伟, 沈阳. 多源多时相遥感数据在冬小麦识别中的应用研究. 地理与地理信息科学, 2010, 26(4): 47-49
Li Y, Chen X W, Duan H W, Shen Y.Application of multi-source and multi-temporal remote sensing data in winter wheat identification.Geog Geo-Inf Sci, 2010, 26(4): 47-49 (in Chinese with English abstract)
[16] Conese C, Maselli F.Use of multi-temporal information to improve classification performance of TM scenes in complex terrain.ISPRS J Photogram Remote Sens, 1991, 46: 187-197
doi: 10.1016/0924-2716(91)90052-W
[17] 张喜旺, 秦耀辰, 秦奋. 综合季相节律和特征光谱的冬小麦种植面积遥感估算. 农业工程学报, 2013, 29(8): 154-163
doi: 10.3969/j.issn.1002-6819.2013.08.018
Zhang X W, Qin Y C, Qin F.Remote sensing estimation of planting area for winter wheat by integrating seasonal rhythms and spectral characteristics.Trans CSAE, 2013, 29(8): 154-163 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2013.08.018
[18] Wardlow B D, Egbert S L.Large-area crop mapping using time- series MODIS 250m NDVI data: an assessment for the U.S. Central Great Plains.Remote Sens Environ, 2008, 112: 1096-1116
doi: 10.1016/j.rse.2007.07.019
[19] Zheng B, Myint S W, Thenkabail P S, Aggarwal R M.A support vector machine to identify irrigated crop types using time-series Landsat NDVI data.Int J Appl Earth Observ & Geoinf, 2015, 34: 103-112
doi: 10.1016/j.jag.2014.07.002
[20] 刘佳, 王利民, 杨福刚, 杨玲波, 王小龙. 基于HJ时间序列数据的农作物种植面积估算. 农业工程学报, 2015, 31(3): 199-206
doi: 10.3969/j.issn.1002-6819.2015.03.026
Liu J, Wang L M, Yang F G, Yang L B, Wang X L.Remote sensing estimation of crop planting area based on HJ time-series images.Trans CSAE, 2015, 31(3): 199-206 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2015.03.026
[21] Suzuki K, Takeuchi T.Classification of upland crops using multi-temporal RapidEye data.J Jpn Agric Syst Soc, 2015, 31: 1-10
doi: 10.14962/jass.31.1_1
[22] Carfagna E, Gallego F J.Using remote sensing for agricultural statistics.Int Statistical Rev, 2005, 73: 389-404
doi: 10.1111/j.1751-5823.2005.tb00155.x
[23] 焦险峰, 杨邦杰, 裴志远. 基于分层抽样的中国水稻种植面积遥感调查方法研究. 农业工程学报, 2006, 22(5): 105-110
Jiao X F, Yang B J, Pei Z Y.Paddy rice area estimation using a stratified sampling method with remote sensing in China.Trans CSAE, 2006, 22(5): 105-110 (in Chinese with English abstract)
[24] 王增林, 朱大明. 基于遥感影像的最大似然分类算法的探讨. 河南科学, 2010, 28: 1458-1461
doi: 10.3969/j.issn.1004-3918.2010.11.024
Wang Z L, Zhu D M.A study of maximum likelihood classification algorithm based on remote sensing image.Henan Sci, 2010, 28: 1458-1461 (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-3918.2010.11.024
[25] Mosleh M K, Hassan Q K, Chowdhury E H.Application of remote sensors in mapping rice area and forecasting its production: a review.Sensors, 2015, 15: 769-791
doi: 10.3390/s150100769 pmid: 4327048
[26] 王利民, 刘佳, 杨玲波, 杨福刚, 滕飞, 王小龙. 基于NDVI 加权指数的冬小麦种植面积遥感监测. 农业工程学报, 2016, 32(17): 127-135
Wang L M, Liu J, Yang L B, Yang F G, Teng F, Wang X L.Remote sensing monitoring winter wheat area based on weighted NDVI index.Trans CSAE, 2016, 32(17): 127-135 (in Chinese with English abstract)
[27] Bargiel D.A new method for crop classification combining time series of radar images and crop phenology information.Remote Sens Environ, 2017, 198: 369-383
doi: 10.1016/j.rse.2017.06.022
[28] Massey R, Sankey T T, Congalton R G, Yadav K, Thenkabail P S, Ozdogan M, Meador A J S. MODIS phenology-derived, multi-year distribution of conterminous U.S. crop types.Remote Sens Environ, 2017, 198: 490-503
doi: 10.1016/j.rse.2017.06.033
[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[3] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[4] 竞霞, 邹琴, 白宗璠, 黄文江. 基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展[J]. 作物学报, 2021, 47(11): 2067-2079.
[5] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[6] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[7] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[8] 于宁宁,张吉旺,任佰朝,赵斌,刘鹏. 综合农艺管理对夏玉米叶片生长发育及内源激素含量的影响[J]. 作物学报, 2020, 46(6): 960-967.
[9] 吾木提·艾山江,买买提·沙吾提,陈水森,李丹. 基于GF-1/2卫星数据的冬小麦叶面积指数反演[J]. 作物学报, 2020, 46(5): 787-797.
[10] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[11] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[12] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
[13] 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249.
[14] 姜丽娜,马静丽,方保停,马建辉,李春喜,王志敏,蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966.
[15] 何昕楠,林祥,谷淑波,王东. 微喷补灌对麦田土壤物理性状及冬小麦耗水和产量的影响[J]. 作物学报, 2019, 45(6): 879-892.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!