欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (11): 2067-2079.doi: 10.3724/SP.J.1006.2021.03057

• 综述 •    下一篇

基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展

竞霞1(), 邹琴1, 白宗璠1, 黄文江2,*()   

  1. 1西安科技大学测绘科学与技术学院, 陕西西安 710054
    2中国科学院空天信息创新研究院遥感科学国家重点实验室, 北京 100101
  • 收稿日期:2020-09-29 接受日期:2021-04-26 出版日期:2021-11-12 网络出版日期:2021-05-21
  • 通讯作者: 黄文江
  • 作者简介:E-mail: jingxiaxust@163.com
  • 基金资助:
    国家自然科学基金项目(41601467);国家自然科学基金项目(52079103)

Research progress of crop diseases monitoring based on reflectance and chlorophyll fluorescence data

JING Xia1(), ZOU Qin1, BAI Zong-Fan1, HUANG Wen-Jiang2,*()   

  1. 1College of Geometrics, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
    2State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2020-09-29 Accepted:2021-04-26 Published:2021-11-12 Published online:2021-05-21
  • Contact: HUANG Wen-Jiang
  • Supported by:
    National Natural Science Foundation of China(41601467);National Natural Science Foundation of China(52079103)

摘要:

作物病害是影响粮食产量和质量的生物灾害, 病害的侵染消耗了作物营养和水分, 扰乱了其正常的生命过程, 引起了作物内部生理生化和外部表观形态的改变。冠层反射光谱能够较好地探测作物群体结构信息, 叶绿素荧光能敏感反映作物光合生理上的变化, 二者均能够实现作物病害的遥感探测。本文从作物病害遥感探测的方法和尺度两个方面综述了基于反射率光谱的作物病害遥感监测现状, 概括了主动荧光、被动荧光以及协同日光诱导叶绿素荧光和反射率光谱在作物病害遥感监测中的研究进展, 分析了反射率光谱和叶绿素荧光数据在作物病害遥感探测方面的优缺点, 探讨了不同数据源、不同监测方法在作物病害遥感探测中可能存在的问题, 并在此基础上展望了作物病害遥感监测的未来发展, 旨在为后续利用反射率光谱和叶绿素荧光数据探测作物病害提供重要的参考依据。

关键词: 反射率, 叶绿素荧光, 作物病害, 遥感监测

Abstract:

Crop diseases are biological disasters that affect grain production and quality. The infestation of diseases consumes the nutrients and water, disrupts its normal life process, and causes changes in the internal physiological and biochemical state and external appearance of the crop. Canopy reflectance spectrum can detect crop population structure information well, and chlorophyll fluorescence data can sensitively reflect changes in crop photosynthetic physiology, both methods are capable of detecting crop diseases via remote sensing technology. This article outlined the current research status of crop diseases detection based on reflectance spectrum through remote sensing technology from the aspects of monitoring methods and monitoring scales, summarized the research progress of using active fluorescence, passive fluorescence and coordinated solar-induced chlorophyll fluorescence and reflectance spectroscopy to monitor crop diseases, analyzed the advantages and disadvantages of reflectance spectrum and chlorophyll fluorescence data in crop disease early warning detection, and discussed the possible problems in the remote sensing detection of crop diseases. On the basis, we made a prospect for the development of remote sensing monitoring crop diseases. This paper provides an important reference for the subsequent applications of crop diseases detection based on reflectance spectrum and chlorophyll fluorescence data.

Key words: reflectance, chlorophyll fluorescence, crop diseases, remote sensing monitoring

表1

特征选择算法及敏感波段"

作物病害类型
Type of crop diseases
光谱响应波段
Spectral response band (nm)
特征选择算法
Feature selection algorithm
参考文献
References
小麦条锈病 Wheat stripe rust 560-670 Filter [24]
小麦白粉病 Wheat powdery mildew 490, 510, 516, 540, 780, 1300 Filter [25]
水稻穗颈瘟 Rice panicles blast 430-530, 580-680, 1480-2000 Filter [26]
番茄晚疫病 Tomato late blight 700-750, 750-930, 950-1030, 1040-1130 Filter [27]
棉花黄萎病 Cotton verticillium wilt 680-760, 731-1371 Filter [28]
玉米大斑病 Corn leaf blight 725-740 Filter [29]
小麦条锈病、小麦白粉病
Wheat yellow rust, wheat powdery mildew
480, 633, 934 Wrapper [30]
水稻颖枯病 Rice panicles 450-850 Wrapper [31]
番茄叶斑病 Tomato bacterial spot 395, 633-635, 750-760 Wrapper [32]
花生叶斑病 Peanut leaf spots 761, 938 Wrapper [33]
苹果黑星病 Venturia inaequalis infection 1350-1750, 2200-2500 Embedded [34]
马铃薯晚疫病 Potato late blight 600-900 Embedded [35]

表2

作物病害遥感监测算法"

模型
Model
作物病害种类
Type of crop diseases
算法
Algorithm
文献
Reference
统计模型
Statistical model
小麦白粉病
Wheat powdery mildew
相关分析、方差分析
Correlation analysis and variance analysis
[41]
小麦条锈病
Wheat stripe rust
线性回归、非线性回归
Linear regression and nonlinear regression
[42]
小麦白粉病
Wheat powdery mildew
Logistic回归
Logistic regression
[43]
番茄叶斑病
Tomato bacterial spot
偏最小二乘回归、多元逐步回归
Partial least squares regression and multiple stepwise regression
[44]
小麦条锈病
Wheat stripe rust
偏最小二乘法
Partial least squares
[9]
人工智能模型
Artificial
intelligence model
水稻颖枯病、曲霉病
Rice glume blight disease and false smut disease
主成分分析
Principal component analysis
[31]
黄瓜花叶病毒
Cucumber mosaic virus
人工神经网络
Artificial neural network
[45]
小麦白粉病
Wheat powdery mildew
Fisher线性判别分析、AdaBoost和支持向量机
Fisher linear discriminant analysis, support vector machine, and AdaBoost model
[46]
大豆枯萎病
Soybean sudden death syndrome
偏最小二乘判别分析
Partial least squares discriminant analysis
[47]
油棕茎腐病
Oil palm basal stem rot
决策树、随机森林和支持向量机
Decision tree, random forest, and support vector machine
[48]
小麦白粉病
Wheat powdery mildew
随机森林
Random forest
[49]
蚕豆病虫害
Broad bean disease and pests
聚类算法
K-Means and the FCM clustering
[50]

表3

不同尺度的作物病害遥感监测应用案例"

监测尺度
Monitoring scale
设备
Devices
特点
Characteristics
病害类型
Type of diseases
参考文献
Reference
叶片及冠层尺度
Leaf and canopy scale
非成像高光谱扫描仪、成像高光谱仪。
Non-imaging hyperspectral scanner and imaging hyperspectral spectrometer.
方便、灵活以及受外界因素影响较小、监测精度高, 通常用于作物病害的遥感探测机理研究, 受探测范围限制, 难以实现大区域作物病害的遥感探测。
Convenient, flexible and less affected by external factors, with high detection accuracy. It is usually used to study the mechanism of early warning and detection of crop diseases. Due to the limitation of the detection range, it is difficult to realize the correction and detection of large-area crop diseases.
甜菜叶斑病、叶锈病和白粉病
Sugar beet leaf spot, leaf rust and powdery mildew
[66]
小麦白粉病
Wheat powdery mildew
[67]
地块尺度
Plot scale
成像多光谱仪、成像高光谱相机、热红外成像仪。
Imaging multi-spectrometer, imaging hyperspectral camera and thermal infrared imager.
通常利用搭载于航空平台的传感器监测, 探测范围较大, 数据源获取相对航天数据更为灵活且受天气状况影响较小, 对爆发性流行病害具有一定的应急监测能力。
Usually, the sensors carried on the aviation platform are used for monitoring, which has a large detection range, more flexible data source acquisition compared with space data, and less affected by weather conditions, and have a certain emergency monitoring ability for explosive epidemic diseases.
水稻穗瘟病
Rice panicle blast
[26]
番茄晚疫病
Tomato late blight
[68]
区域尺度
Regional scale
多光谱卫星、高光谱卫星、热红外卫星。
Multispectral satellites, hyperspectral satellites and thermal infrared satellites.
探测范围广, 以卫星数据为数据源, 能周期性地对同一地区进行重复监测, 为大尺度病害预报和流行趋势提供依据。
Wide detection range. Using satellite data as a data source, it can periodically re-monitor the same area and provide a basis for large-scale disease forecasts and epidemic trends.
小麦锈病
Wheat rust
[69]
小麦白粉病
Wheat powdery midew
[70]
小麦黄锈病
Wheat yellow rust
[71]
芦笋紫斑病
Asparagus purple spot disease
[72]
黄锈病和蚜虫
Wheat yellow rust and aphid
[73]

图1

稳态条件下叶片吸收光能后的释放途径及叶片荧光发射概念图[79]"

图2

狭窄的大气吸收带对太阳辐照度的影响(左)和荧光对吸收带内的填充效应(右)[104]"

表4

单波段和全波段SIF的提取算法"

反演算法
Retrieval algorithms
Fraunhofer线内外反射率和荧光关系
The relationship of reflectance and SIF between the internal and external Fraunhofer dark line respectively
参考文献
Reference
单波段
Single spectrum
FLD r(λout) = r(λin), F(λout) = F(λin) [102]
3FLD r(λin) = r(λleftωleft+r(λrightωright, F(λout) = F(λin) [103]
iFLD r(λout) = αR r(λin), F(λout) = αFF(λin) [104]
SFM r(λ) = f(rλ), F(λ) = f(Fλ) [106]
pFLD $\ddot{R}(\lambda )=\sum\limits_{i=1}^{n}{{{k}_{i}}{{\phi }_{i}}(\lambda )} $ [105]
全波段
Full spectrum
SFM r(λ) = S(rλ), F(λ) = V(Fλ) [107]
FSR F(λ) ≈ b0+b1∙(λ-λ0)+b2∙(λ-λ0)², r(λ) ≈ b3+b4∙(λ-λ0)+b5∙(λ-λ0 [108]
F-SFM $r(\lambda )=\sum\limits_{i}^{m}{{{k}_{i}}{{\varphi }_{i}}}(\lambda )$., $F(\lambda)=\sum_{i}^{n} j_{i} {\phi }_{i}(\lambda)$ [109]
[1] Deutsch C A, Tewksbury J J, Michelle T, Battisti D S, Merrill S C, Huey R B, Naylor R L. Increase in crop losses to insect pests in a warming climate. Science, 2018, 361: 916-919.
doi: 10.1126/science.aat3466 pmid: 30166490
[2] 黄文江, 张竞成, 罗菊花, 赵晋陵. 作物病虫害遥感监测与预测. 北京: 科学出版社, 2015. p 4.
Huang W J, Zhang J C, Luo J H, Zhao J L. Remote Sensing Monitoring and Prediction of Crop Diseases and Insect Pests. Beijing: Science Press, 2015. p 4 (in Chinese).
[3] 竞霞. 基于多源多时相数据棉花黄萎病遥感监测研究. 北京师范大学博士学位论文, 北京 2009.
Jing X. Study on Remote-sensing Monitoring of Cotton Verticillium Wilt Based on Multi-source and Multi-temporal Data. PhD Dissertation of Beijing Normal University, Beijing, China, 2009 (in Chinese with English abstract).
[4] Sankaran S, Mishra A, Ehsani R, Davis C. A review of advanced techniques for detecting plant diseases. Comput Electron Agric, 2010, 72: 1-13.
doi: 10.1016/j.compag.2010.02.007
[5] 陈思媛, 竞霞, 董莹莹, 刘良云. 基于日光诱导叶绿素荧光与反射率光谱的小麦条锈病探测研究. 遥感技术与应用, 2019, 34: 511-520.
Chen S Y, Jing X, Dong Y Y, Liu L Y. Detection of wheat stripe rust using solar-induced chlorophyll fluorescence and reflectance spectral indices. Remote Sens Technol Appl, 2019, 34: 511-520 (in Chinese with English abstract).
[6] 吴琼, 齐波, 赵团结, 姚鑫锋, 朱艳, 盖钧镒. 高光谱遥感估测大豆冠层生长和籽粒产量的探讨. 作物学报, 2013, 39: 309-318.
Wu Q, Qi B, Zhao T J, Yao X F, Zhu Y, Gai J Y. A tentative study on utilization of canopy hyperspectral reflectance to estimate canopy growth and seed yield in soybean. Acta Agron Sin, 2013, 39: 309-318 (in Chinese with English abstract).
[7] Mahlein A K, Steiner U, Hillnhütter C, Dehne H W, Oerke E C. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods, 2012, 8: 3.
doi: 10.1186/1746-4811-8-3
[8] 赵叶, 竞霞, 黄文江, 董莹莹, 李存军. 日光诱导叶绿素荧光与反射率光谱数据监测小麦条锈病严重度的对比分析. 光谱学与光谱分析, 2019, 39: 2739-2745.
Zhao Y, Jing X, Huang W J, Dong Y Y, Li C J. Comparison of sun-induced chlorophyll fluorescence and reflectance data on estimating severity of wheat stripe rust. Spectrosc Spectral Anal, 2019, 39: 2739-2745 (in Chinese with English abstract).
[9] 竞霞, 吕小艳, 张超, 白宗璠. 基于SIF-PLS模型的冬小麦条锈病早期光谱探测. 农业机械学报, 2020, 51(6):191-197.
Jing X, Lyu X Y, Zhang C, Bai Z F. Early detection of winter wheat stripe rust based on SIF-PLS model. Trans CSAM, 2020, 51(6):191-197 (in Chinese with English abstract).
[10] 黄文江, 师越, 董莹莹, 叶回春, 邬明权, 崔贝, 刘林毅. 作物病虫害遥感监测研究进展与展望. 智慧农业, 2019, 1(4):1-11.
Huang W J, Shi Y, Dong Y Y, Ye H C, Wu M Q, Cui B, Liu L Y. Progress and prospects of crop diseases and pests monitoring by remote sensing. Smart Agric, 2019, 1(4):1-11 (in Chinese with English abstract).
[11] Calderón R, Navas-Cortés J A, Lucena C, Zarco-Tejada J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens Environ, 2013, 139: 231-245.
doi: 10.1016/j.rse.2013.07.031
[12] Ashourloo D, Mobasheri M R, Huete A. Developing two spectral disease indices for detection of wheat leaf rust (Puccinia triticina). Remote Sens, 2014, 6: 4723-4740.
doi: 10.3390/rs6064723
[13] 黄木易, 王纪华, 黄文江, 黄义德, 赵春江, 万安民. 冬小麦条锈病的光谱特征及遥感监测. 农业工程学报, 2003, 19(6):154-158.
Huang M Y, Wang J H, Huang W J, Huang Y D, Zhao C J, Wan A M. Hyperspectral character of stripe rust on winter wheat and monitoring by remote sensing. Trans CSAE, 2003, 19(6):154-158 (in Chinese with English abstract).
[14] 张竞成, 袁琳, 王纪华, 罗菊花, 杜世州, 黄文江. 作物病虫害遥感监测研究进展. 农业工程学报, 2012, 28(20):1-11.
Zhang J C, Yuan L, Wang J H, Luo J H, Du S Z, Huang W J. Research progress of crop diseases and pests monitoring based on remote sensing. Trans CSAE, 2012, 28(20):1-11 (in Chinese with English abstract).
[15] 黄文江, 刘林毅, 董莹莹, 师越, 叶回春, 张竞成. 基于遥感技术的作物病虫害监测研究进展. 农业工程技术, 2018, 38(9):39-45.
Huang W J, Liu L Y, Dong Y Y, Shi Y, Ye H C, Zhang J C. Research progress of crop disease and pest monitoring based on remote sensing technology. Agric Eng Technol, 2018, 38(9):39-45 (in Chinese).
[16] Bruce L M, Koger C H, Li J. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans Geosci Remote Sens, 2002, 40: 2331-2338.
doi: 10.1109/TGRS.2002.804721
[17] 周传华, 柳智才, 丁敬安, 周家亿. 基于filter+wrapper模式的特征选择算法. 计算机应用研究, 2019, 36: 1975-1979.
Zhou C H, Liu Z C, Ding J A, Zhou J Y. Feature selection algorithm based on filter + wrapper pattern. Appl Res Comput, 2019, 36: 1975-1979 (in Chinese with English abstract).
[18] 竞霞, 张腾, 白宗璠, 黄文江. 融合GA与SVR算法的小麦条锈病特征优选与模型构建. 农业机械学报, 2020, 51(11):253-263.
Jing X, Zhang T, Bai Z F, Huang W J. Feature selection and model construction of wheat stripe rust based on GA and SVR algorithm. Trans CSAM, 2020, 51(11):253-263 (in Chinese with English abstract).
[19] Waad B, Ghazi B M, Mohamed L. On the effect of search strategies on wrapper feature selection in credit scoring. IEEE-Codit, 2013, 218-223.
[20] 高媛, 竞霞, 刘良云, 白宗璠. 基于多核支持向量机的小麦条锈病遥感监测研究. 麦类作物学报, 2020, 40(1):118-126.
Gao Y, Jing X, Liu L Y, Bai Z F. Remote sensing monitoring of wheat stripe rust based on multiple kernel SVM. J Triticeae Crops, 2020, 40(1):118-126 (in Chinese with English abstract).
[21] 竞霞, 白宗璠, 高媛, 刘良云. 利用随机森林法协同SIF和反射率光谱监测小麦条锈病. 农业工程学报, 2019, 35(13):154-161.
Jing X, Bai Z F, Gao Y, Liu L Y. Wheat stripe rust monitoring by random forest algorithm combined with SIF and reflectance spectrum. Trans CSAE, 2019, 35(13):154-161 (in Chinese with English abstract).
[22] 依尔夏提·阿不来提, 买买提·沙吾提, 白灯莎·买买提艾力, 安申群, 马春玥. 基于随机森林法的棉花叶片叶绿素含量估算. 作物学报, 2019, 45: 81-90.
Ershat A, Mamat S, Baidengsha M, An S Q, Ma C Y. Estimation of leaf chlorophyll content in cotton based on the random forest approach. Acta Agron Sin, 2019, 45: 81-90 (in Chinese with English abstract).
[23] Wainwright M J. Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting. IEEE Trans Inf Theory, 2009, 55: 5728-5741.
doi: 10.1109/TIT.2009.2032816
[24] 刘良云, 黄木易, 黄文江, 王纪华, 赵春江, 郑兰芬, 童庆禧. 利用多时相的高光谱航空图像监测冬小麦条锈病. 遥感学报, 2004, 8: 275-281.
Liu L Y, Huang M Y, Huang W J, Wang J H, Zhao C J, Zheng L F, Tong Q X. Monitoring stripe rust disease of winter wheat using multi-temporal hyperspectral airborne data. Natl Remote Sens Bull, 2004, 8: 275-281 (in Chinese with English abstract).
[25] Graeff S, Link J, Claupein W. Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements. Open Life Sci, 2006, 1: 275-288.
[26] Kobayashi T, Kanda E, Kitada K, Ishiguro K, Torigoe Y. Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners. Phytopathology, 2001, 91: 316-323.
doi: 10.1094/PHYTO.2001.91.3.316 pmid: 18943352
[27] Zhang M H, Qin Z H, Liu X. Remote sensed spectral imagery to detect late blight in field tomato. Precis Agric, 2005, 6: 489-508.
doi: 10.1007/s11119-005-5640-x
[28] Chen B, Wang K, Li S K, Wang J, Bai J H, Xiao C H, Lai J C. Spectrum characteristics of cotton canopy infected with verticillium wilt and inversion of severity level. Agric Sci China, 2008, 259: 1169-1180.
[29] 王利民, 刘佳, 邵杰, 杨福刚, 高建孟. 基于高光谱的春玉米大斑病害遥感监测指数选择. 农业工程学报, 2017, 33(5):170-177.
Wang L M, Liu J, Shao J, Yang F G, Gao J M. Remote sensing index selection of leaf blight disease in spring maize based on hyperspectral data. Trans CSAE, 2017, 33(5):170-177 (in Chinese with English abstract).
[30] Shi Y, Huang W J, Gonzalez-Moreno P, Luke B, Dong Y Y, Zheng Q, Ma H Q, Liu L Y. Wavelet-based rust spectral feature set (WRSFs): a novel spectral feature set based on continuous wavelet transformation for tracking progressive host-pathogen interaction of yellow rust on wheat. Remote Sens, 2018, 252: 1-19.
[31] Liu Z Y, Wu H F, Huang J F. Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis. Comput Electron Agric, 2010, 72: 99-106.
doi: 10.1016/j.compag.2010.03.003
[32] Jones C D, Jones J B, Lee W S. Diagnosis of bacterial spot of tomato using spectral signatures. Comput Electron Agric, 2010, 74: 329-335.
doi: 10.1016/j.compag.2010.09.008
[33] Chen T T, Zhang J L, Chen Y, Wan S B, Zhang L. Detection of peanut leaf spots disease using canopy hyperspectral reflectance. Comput Electron Agric, 2019, 156: 677-683.
doi: 10.1016/j.compag.2018.12.036
[34] Delalieux S, Aardt J V, Keulemans W, Schrevens E, Coppin P. Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: non-parametric statistical approaches and physiological implications. Eur J Agron, 2007, 27: 130-143.
doi: 10.1016/j.eja.2007.02.005
[35] Franceschini M H D, Bartholomeus H, Apeldoorn D F V, Suomalainen J, Kooistra L. Feasibility of unmanned aerial vehicle optical imagery for early detection and severity assessment of late blight in potato. Remote Sens, 2019, 11: 1-47.
doi: 10.3390/rs11010001
[36] 姚雄, 余坤勇, 杨玉洁, 曾琪, 陈樟昊, 刘健. 基于随机森林模型的林地叶面积指数遥感估算. 农业机械学报, 2017, 48(5):159-166.
Yao X, Yu K Y, Yang Y J, Zeng Q, Chen Z H, Liu J. Estimation of forest leaf area index based on random forest model and remote sensing data. Trans CSAM, 2017, 48(5):159-166 (in Chinese with English abstract).
[37] 白雪冰, 余建树, 傅泽田, 张领先, 李鑫星. 可见光谱图像联合区间的黄瓜白粉病分割与检测. 光谱学与光谱分析, 2019, 39: 3592-3598.
Bai X B, Yu J S, Fu Z T, Zhang L X, Li X X. Segmentation and detection of cucumber powdery mildew based on visible spectrum and image processing. Spectrosc Spect Anal, 2019, 39: 3592-3598 (in Chinese with English abstract).
[38] 李金敏, 陈秀青, 杨琦, 史良胜. 基于高光谱的水稻叶片氮含量估计的深度森林模型研究. 作物学报, 2021, 47: 1342-1350.
Li J M, Chen X Q, Yang Q, Shi L S. Deep learning models for estimation of paddy rice leaf nitrogen concentration based on canopy hyperspectral data. Acta Agron Sin, 2021, 47: 1342-1350 (in Chinese with English abstract).
[39] Ashourloo D, Aghighi H, Matkan A A, Mobasheri M R, Rad A M. An investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurement. IEEE J Selec Topic Appl Earth Observ Remote Sens, 2016, 9: 1-8.
[40] 陶新民, 郝思媛, 张冬雪, 徐鹏. 核聚类集成失衡数据SVM算法. 哈尔滨工程大学学报, 2013, 34: 381-388.
Tao X M, Hao S Y, Zhang D X, Xu P. Kernel cluster-based ensemble SVM approaches for unbalanced data. J Harbin Eng Univ, 2013, 34: 381-388 (in Chinese with English abstract).
[41] 乔红波, 周益林, 白由路, 程登发, 段霞瑜. 地面高光谱和低空遥感监测小麦白粉病初探. 植物保护学报, 2006, 33: 341-344.
Qiao H B, Zhou Y L, Bai Y L, Cheng D F, Duan X Y. The primary research of detecting wheat powdery mildew using in-field and low altitude remote sensing. J Plant Prot, 2006, 33: 341-344 (in Chinese with English abstract).
[42] 蒋金豹, 陈云浩, 黄文江, 李京. 冬小麦条锈病严重度高光谱遥感反演模型研究. 南京农业大学学报, 2007, 30(3):63-67.
Jiang J B, Chen Y H, Huang W J, Li J. Study on hyperspectral remote sensing retriveral models about winter wheat stripe rust severity. J Nanjing Agric Univ, 2007, 30(3):63-67 (in Chinese with English abstract).
[43] Zhang J, Pu R, Yuan L, Huang W, Nie C, Yang G. Integrating remotely sensed and meteorological observations to forecast wheat powdery mildew at a regional scale. IEEE J Sel Topic Appl Earth Observ Remote Sens, 2014, 7: 4328-4339.
[44] Jones C D, Jones J B, Lee W S. Diagnosis of bacterial spot of tomato using spectral signatures. Comput Electron Agric, 2010, 74: 329-335.
doi: 10.1016/j.compag.2010.09.008
[45] Kouakou A K, Bagui O K, Agneroh T A, Soro A P, Zoueu J T. Cucumber mosaic virus detection by artificial neural network using multispectral and multimodal imagery. Optik, 2016, 127: 11250-11257.
doi: 10.1016/j.ijleo.2016.09.035
[46] 马慧琴, 黄文江, 景元书, 董莹莹, 张竞成, 聂臣巍, 唐翠翠, 赵晋陵, 黄林生. 基于AdaBoost模型和mRMR算法的小麦白粉病遥感监测. 农业工程学报, 2017, 33(5):162-169.
Ma H Q, Huang W J, Jing Y S, Dong Y Y, Zhang J C, Nie C W, Tang C C, Zhao J L, Huang L S. Remote sensing monitoring of wheat powdery mildew based on AdaBoost model combining mRMR algorithm. Trans CSAE, 2017, 33(5):162-169 (in Chinese with English abstract).
[47] Herrmann I, Vosberg S K, Ravindran P, Singh A, Chang H, Chilvers M I, Conley S P, Townsend P A. Leaf and canopy level detection of Fusarium virguliforme (sudden death syndrome) in soybean. Remote Sens, 2018, 10: 1-9.
doi: 10.3390/rs10010001
[48] Santoso H, Tani H, Wang X, Prasetyo A E, Sonobe R. Classifying the severity of basal stem rot disease in oil palm plantations using WorldView-3 imagery and machine learning algorithms. Int J Remote Sens, 2018, 40: 7624-7646.
doi: 10.1080/01431161.2018.1541368
[49] 李健丽, 董莹莹, 师越, 朱溢佞, 黄文江. 基于随机森林模型的小麦白粉病遥感监测方法. 植物保护学报, 2018, 45: 395-396.
Li J L, Dong Y Y, Shi Y, Zhu Y N, Huang W J. Remote sensing monitoring of wheat powdery mildew based on random forest model. J Plant Prot, 2018, 45: 395-396 (in Chinese with English abstract).
[50] Xia J A, Yang Y W, Cao H X, Ke Y, Ge D, Zhang W, Ge S, Chen G. Performance analysis of clustering method based on crop pest spectrum. Eng Agric Environ Food, 2018, 11: 84-89.
[51] Steddom K, Bredehoeft M W, Khan M, Rush C M. Comparison of visual and multispectral radiometric disease evaluations of cercospora leaf spot of sugar beet. Plant Dis, 2005, 89: 153-158.
doi: 10.1094/PD-89-0153 pmid: 30795217
[52] Arens N, Backhaus A, Doell S, Seiffert U, Mock H P. Non-invasive presymptomatic detection of cercospora beticola infection and identification of early metabolic responses in sugar beet. Front Plant Sci, 2016, 7; doi: 10.3389/fpls.2016.01377.
doi: 10.3389/fpls.2016.01377
[53] Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R. Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy, 2014, 4: 349-379.
doi: 10.3390/agronomy4030349
[54] Vigneau N, Ecarnot M, Rabatel G, Roumet P. Potential of field hyperspectral imaging as a non-destructive method to assess leaf nitrogen content in wheat. Field Crops Res, 2011, 122: 25-31.
doi: 10.1016/j.fcr.2011.02.003
[55] Taubenhaus J J, Ezekiel W N, Neblatte C B. Airplane photography in the study of cotton root rot. Phytooathology, 1929, 19: 1025-1029.
[56] Lowe A, Harrison N, French A P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Method, 2017, 13: 1-12.
doi: 10.1186/s13007-016-0152-4
[57] Devadas R, Lamb D W, Backhouse E, Simpfendorfer S. Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat. Precis Agric, 2015, 16: 477-491.
doi: 10.1007/s11119-015-9390-0
[58] Dhau I, Adam E, Mutanga O, Ayisi K, Abdel-Rahman E M, Odindi J, Masocha M. Testing the capability of spectral resolution of the new multispectral sensors on detecting the severity of grey leaf spot disease in maize crop. Geocart Int, 2018, 33: 1223-1236.
doi: 10.1080/10106049.2017.1343391
[59] Chakradhar M, Corey M, Kushendra S, Carolyn Y. Supervised classification of RGB aerial imagery to evaluate the impact of a root rot disease. Remote Sens, 2018, 10: 1-17.
doi: 10.3390/rs10010001
[60] Liu W, Cao X, Fan J, Wang Z, Yan Z, Luo Y, West J S, Xu X, Zhou Y. Detecting wheat powdery mildew and predicting grain yield using unmanned aerial photography. Plant Dis, 2018, 102: 1981-1988.
doi: 10.1094/PDIS-12-17-1893-RE
[61] Zhang X, Han L, Dong Y, Shi Y, Sobeih T. A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images. Remote Sens, 2019, 11: 1-16.
doi: 10.3390/rs11010001
[62] Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart L R, Davis C E, Dandekar A M. Advanced methods of plant disease detection. a review. Agron Sustain Dev, 2015, 35: 1-25.
doi: 10.1007/s13593-014-0246-1
[63] Yuan L, Zhang H B, Zhang Y T, Xing C, Bao Z Y. Feasibility assessment of multi-spectral satellite sensors in monitoring and discriminating wheat diseases and insects. Optik, 2017, 131: 598-608.
doi: 10.1016/j.ijleo.2016.11.206
[64] Yuan L, Pu R L, Zhang J C, Wang J, Yang H. Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale. Precis Agric, 2016, 17: 332-348.
doi: 10.1007/s11119-015-9421-x
[65] Jonas F, Gunter M. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precis Agric, 2007, 8: 161-172.
doi: 10.1007/s11119-007-9036-y
[66] Rumpf T, Mahlein A K, Steiner U, Oerke E C, Dehne H W, Plümer L. Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput Electron Agric, 2010, 74: 91-99.
doi: 10.1016/j.compag.2010.06.009
[67] Cao X, Luo Y, Zhou Y, Duan X, Cheng D. Detection of powdery mildew in two winter wheat cultivars using canopy hyperspectral reflectance. Crop Prot, 2013, 45: 124-131.
doi: 10.1016/j.cropro.2012.12.002
[68] Wang X, Zhang M, Zhu J, Geng S. Spectral prediction of phytophthora infestans infection on tomatoes using artificial neural network (ANN). Int J Remote Sens, 2008, 29: 1693-1706.
doi: 10.1080/01431160701281007
[69] Chen D, Shi Y, Huang W, Zhang J, Wu K. Mapping wheat rust based on high spatial resolution satellite imagery. Comput Electron Agric, 2018, 152: 109-116.
doi: 10.1016/j.compag.2018.07.002
[70] Zhang J C, Pu R L, Yuan L, Wang J H, Huang W J, Yang G J. Monitoring powdery mildew of winter wheat by using moderate resolution multi-temporal satellite imagery. PLoS One, 2014, 9: e93107.
doi: 10.1371/journal.pone.0093107
[71] Zheng Q, Huang W, Cui X, Shi Y, Liu L. New spectral index for detecting wheat yellow rust using Sentinel-2 multispectral imagery. Sensors, 2018, 18: 1-19.
doi: 10.3390/s18010001
[72] Navrozidis I, Alexandridis T K, Dimitrakos A, Lagopodi A L, Moshou D, Zalidis G. Identification of purple spot disease on asparagus crops across spatial and spectral scales. Comput Electron Agric, 2018, 148: 322-329.
doi: 10.1016/j.compag.2018.03.035
[73] Du X, Li Q, Shang J, Liu J, Qian B, Jing Q, Dong T, Fan D, Wang H, Zhao L, Lieff S, Davies T. Detecting advanced stages of winter wheat yellow rust and aphid infection using RapidEye data in North China Plain. GISci Remote Sens, 2019, 56: 1093-1113.
doi: 10.1080/15481603.2019.1613804
[74] Calderón R, Zarco-Tejada P J, Lucena C, Zarco-Tejada P J. High-resolution airborne hyperspectral and thermal imagery for pre-visual detection of Verticillium wilt using fluorescence, temperature and narrow-band indices. Remote Sens Environ, 2013, 139: 231-245.
doi: 10.1016/j.rse.2013.07.031
[75] López-López M, Calderón R, González-Dugo V, Zarco-Tejada P, Fereres E. Early detection and quantification of almond red leaf blotch using high-resolution hyperspectral and thermal imagery. Remote Sens, 2016, 8: 1-23.
doi: 10.3390/rs8010001
[76] 张永江, 刘良云, 侯名语, 刘连涛, 李存东. 植物叶绿素荧光遥感研究进展. 遥感学报, 2009, 13: 963-978.
Zhang Y J, Liu L Y, Hou M Y, Liu L T, Li C D. Progress in remote sensing of vegetation chlorophyll fluorescence. Natl Remote Sens Bull, 2009, 13: 963-978 (in Chinese with English abstract).
[77] Liu L, Zhang Y, Jiao Q, Peng D. Assessing photosynthetic light-use efficiency using a solar-induced chlorophyll fluorescence and photochemical reflectance index. Int J Remote Sens, 2013, 34: 4264-4280.
doi: 10.1080/01431161.2013.775533
[78] Porcar-Castell A, Tyystjärvi E, Atherton J, van der Tol C, Flexas J, Pfündel E E, Moreno J, Frankenberg C, Berry J A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J Exp Bot, 2014, 65: 4065-4095.
doi: 10.1093/jxb/eru191 pmid: 24868038
[79] Mohammed G H, Colombo R, Middleton E M, Rascher U, Tol C V D, Nedbal L, Goulas Y, Pérez-Priego O, Damm A, Meroni M, Joiner J, Cogliati S, Verhoef W, Malenovský Z, Gastellu- Etchegorry J, Miller J R, Guanter L, Moreno J, Moya I, Berry J A, Frankenberg C, Zarco-Tejada P J. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens Environ, 2019, 231: 1-39.
[80] Ač A, Malenovský Z, Olejníčková J, Gallé A, Rascher U, Mohammed G. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sens Environ, 2015, 168: 420-436.
doi: 10.1016/j.rse.2015.07.022
[81] Ireland C R, Long S P, Baker N R. The relationship between carbon dioxide fixation and chlorophyll a fluorescence during induction of photosynthesis in maize leaves at different temperatures and carbon dioxide concentrations. Planta, 1984, 160: 550-558.
doi: 10.1007/BF00411144 pmid: 24258783
[82] Lang M, Lichtenthaler H K, Sowinska M, Heisel F, Miehé J A. Fluorescence imaging of water and temperature stress in plant leaves. J Plant Physiol, 1996, 148: 613-621.
doi: 10.1016/S0176-1617(96)80082-4
[83] Chiu Y, Hsu W, Chang Y. Detecting cabbage seedling diseases by using chlorophyll fluorescence. Eng Agric Environ Food, 2015, 8: 95-100.
[84] Falkenberg N R, Piccinni G, Cothren J T, Leskovar D I, Rush C M. Remote sensing of biotic and abiotic stress for irrigation management of cotton. Agric Water Manage, 2007, 87: 23-31.
doi: 10.1016/j.agwat.2006.05.021
[85] Maxwell K, Johnson G N. Chlorophyll fluorescence: a practical guide. J Exp Bot, 2000, 51: 659-668.
pmid: 10938857
[86] 刘良云, 张永江, 王纪华, 赵春江. 利用夫琅和费暗线探测自然光条件下的植被光合作用荧光研究. 遥感学报, 2006, 10: 130-137.
Liu L Y, Zhang Y J, Wang J H, Zhao C J. Detecting photosynthesis fluorescence under natural sunlight based on fraunhofer line. Natl Remote Sens Bull, 2006, 10: 130-137 (in Chinese with English abstract).
[87] Atta B M, Saleem M, Ali H, Bilal M, Fayyaz M. Application of fluorescence spectroscopy in wheat crop: early disease detection and associated molecular changes. J Fluoresc, 2020, 30: 801-810.
doi: 10.1007/s10895-020-02561-8
[88] 周丽娜, 于海业, 张蕾, 任顺, 隋媛媛, 于连军. 基于叶绿素荧光光谱分析的稻瘟病害预测模型. 光谱学与光谱分析, 2014, 34: 1003-1006.
Zhou L N, Yu H Y, Zhang L, Ren S, Sui Y Y, Yu L J. Rice blast prediction model based on analysis of chlorophyll fluorescence spectrum. Spectrosc Spectral Anal, 2014, 34: 1003-1006 (in Chinese with English abstract).
[89] 隋媛媛, 王庆钰, 于海业. 基于叶绿素荧光光谱指数的温室黄瓜病害预测. 光谱学与光谱分析, 2016, 36: 1779-1782.
Sui Y Y, Wang Q J, Yu H Y. Prediction of greenhouse cucumber disease based on chlorophyll fluorescence spectrum index. Spectrosc Spectral Anal, 2016, 36: 1779-1782 (in Chinese with English abstract).
[90] Belasque J, Gasparoto M C, Marcassa L G. Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy. Appl Optics, 2008, 47: 1922-1926.
pmid: 18404192
[91] Wang H, Qian X J, Zhang L, Xu S L, Li H F, Xia X J, Dai L K, Xu L, Yu J Q, Liu X. A method of high throughput monitoring crop physiology using chlorophyll fluorescence and multispectral imaging. Front Plant Sci, 2018, 9: 1-12.
doi: 10.3389/fpls.2018.00001
[92] Barón M, Penida M, Pérez-Bueno M L. Picturing pathogen infection in plants. Z Naturforsch, 2016, 7: 355-368.
[93] Lloyd D, Nari W. Imaging and spectroscopy of natural fluorophores in pine needles. Plants, 2018, 7: 1-16.
doi: 10.3390/plants7010001
[94] Sankaran S, Ehsani R. Detection of Huanglongbing disease in citrus using fluorescence spectroscopy. Trans ASABE, 2012, 55: 313-320.
doi: 10.13031/2013.41241
[95] Fabíola M V P, Débora M B P M, Pereira-Filho E R, Pereira-Filho E R, Venâncio A L, Russo M D S T, Cardinali M C D B, Martins P K, Freitas-Astúa J. Laser-induced fluorescence imaging method to monitor citrus greening disease. Comput Electron Agric, 2011, 79: 90-93.
doi: 10.1016/j.compag.2011.08.002
[96] Moshou D, Bravo C, Oberti R, West J, Bodria L, Mccartney A, Ramon H. Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real-Time Imag, 2005, 11: 75-83.
doi: 10.1016/j.rti.2005.03.003
[97] Ouns A, Cerovic Z G, Briantais J M, Moya I. Dual-exacitation FLI-DAR for the estimation of epidermal UV absorption in leaves and canopies. Remote Sens Environ, 2001, 76: 33-45.
doi: 10.1016/S0034-4257(00)00190-5
[98] Rosema A, Snel J F H, Zahn H, Buurmeijer W F, van Hove L W A. The relation between laser-induced chlorophyll fluorescence and photosynthesis. Remote Sens Environ, 1998, 65: 143-154.
doi: 10.1016/S0034-4257(98)00020-0
[99] 章钊颖, 王松寒, 邱博, 宋练, 张永光. 日光诱导叶绿素荧光遥感反演及碳循环应用进展. 遥感学报, 2019, 23: 37-52.
Zhang Z Y, Wang S H, Qiu B, Song L, Zhang Y G. Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle app1ication. Natl Remote Sens Bull, 2019, 23: 37-52 (in Chinese with English abstract).
[100] Zarco-Tejada P J, González-Dugo V, Williams L E, Suárez L, Berni J A, Goldhamer D, Fereres E. A PRI-based water stress index combining structural and chlorophyll effects: assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sens Environ, 2013, 138: 38-50.
doi: 10.1016/j.rse.2013.07.024
[101] Sun Y, Frankenberg C, Wood J D, Schimel D S, Jung M, Guanter L, Drewry D T, Verma M, Porcar-Castell A, Griffis T J, Gu L, Magney T S, Kohler P, Evans B, Yuen K. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science, 2017, 358: 1-7.
[102] Plascyk J A, Gabriel F C. Fraunhofer line discriminator MK II—airborne instrument for precise and standardized ecological luminescence measurement. IEEE Trans Instrum Measur, 1975, 24: 306-313.
doi: 10.1109/TIM.1975.4314448
[103] Maier S W, Günther K P, Stellmes M. Sun-induced fluorescence: a new tool for precision farming. In: McDonald M, Schepers J, Tartly L, eds. Digital Imaging and Spectraltechniques: Applications to Precision Agriculture and Crop Physiology. USA: American Society of Agronomy Special Publication, 2003. pp 209-222.
[104] Luis A, Luis G, Joan V, Julia A, Luis G, Javier C, Jose M. Improved fraunhofer line Discrimination method for vegetation fluorescence quantification. IEEE Geosci Remote Sens Lett, 2008, 5: 620-624.
doi: 10.1109/LGRS.2008.2001180
[105] Liu X J, Liu L Y. Improving chlorophyll fluorescence retrieval using reflectance reconstruction based on principal components analysis. IEEE Geosci Remote Sens Lett, 2015, 12: 1645-1649.
doi: 10.1109/LGRS.2015.2417857
[106] Mazzoni M, Falorni P, Del Bianco S. Sun-induced leaf fluorescence retrieval in the O2-B atmospheric absorption band. Opt Express, 2008, 16: 7014-7022.
pmid: 18545405
[107] Mazzoni M, Falorni P, Verhoef W. High-resolution methods for fluorescence retrieval from space. Opt Express, 2010, 18: 15469-15663.
[108] Zhao F, Guo Y Q, Verhoef W, Gu X, Liu L, Yang G. A method to reconstruct the solar-induced canopy fluorescence spectrum from hyperspectral measurements. Remote Sens, 2014, 6: 10171-10192.
doi: 10.3390/rs61010171
[109] Liu X, Liu L, Zhang S, Zhou X. New spectral fitting method for full-spectrum solar-induced chlorophyll fluorescence retrieval based on principal components analysis. Remote Sens, 2015, 7: 10626-10645.
doi: 10.3390/rs70810626
[110] 张永江, 黄文江, 王纪华, 刘良云, 马智宏, 李佛琳. 基于Fraunhofer线的小麦条锈病荧光遥感探测. 中国农业科学, 2007, 40: 78-83.
Zhang Y J, Huang W J, Wang J H, Liu L Y, Ma Z H, Li F L. Chlorophyll fluorescence sensing to detect stripe rust in wheat (Triticum aestivum L.) fields based on fraunhofer lines. Sci Agric Sin, 2007, 40: 78-83 (in Chinese with English abstract).
[111] Hernández-Clemente R, North P R J, Hornero A, Zarco-Tejada P J. Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the fluorflight 3-d radiative transfer model to account for forest structure. Remote Sens Environ, 2017, 193: 165-179.
doi: 10.1016/j.rse.2017.02.012
[112] Raji S N, Subhash N, Ravi V, Saravanan R, Mohanan C N, Nita S, Kumar T M. Detection of mosaic virus disease in cassava plants by sunlight-induced fluorescence imaging: a pilot study for proximal sensing. Int J Remote Sens, 2015, 36: 2880-2897.
doi: 10.1080/01431161.2015.1049382
[113] 刘琦, 王翠翠, 王睿, 谷医琳, 李薇, 马占鸿. 潜育期小麦条锈菌的高光谱定性识别. 植物保护学报, 2018, 45: 153-160.
Liu Q, Wang C C, Wang R, Gu Y L, Li W, Ma Z H. Hyperspectral qualitative identification on latent period of wheat stripe rust. J Plant Prot, 2018, 45: 153-160 (in Chinese with English abstract).
[114] Song L, Guanter L, Guan K, You L, Huete A, Ju W, Zhang Y. Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains. Glob Change Biol, 2018, 24: 4023-4037.
doi: 10.1111/gcb.2018.24.issue-9
[115] Müller P, Li P, Niyogi K K. Non-photochemical quenching. a response to excess light energy. Plant Physiol, 2001, 125: 1558-1566.
pmid: 11299337
[116] 卢劲竹, 蒋焕煜, 崔笛. 荧光成像技术在植物病害检测的应用研究进展. 农业机械学报, 2014, 45(4):244-252.
Lu J Z, Jiang H Y, Cui D. Progress of fluorescence imaging technology in detection of plant diseases. Trans CSAM, 2014, 45(4):244-252 (in Chinese with English abstract).
[117] Knyazikhin Y, Schull M A, Stenberg P, Moettus M, Rautiainen M, Yang Y, Marshak A, Carmona P L, Kaufmann R K, Lewis P. Hyperspectral remote sensing of foliar nitrogen content. Proc Natl Acad Sci USA, 2012, 110: E185-E192.
doi: 10.1073/pnas.1210196109
[118] Beck P S A, Goetz S J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ Res Lett, 2011, 6: 45501-45510.
doi: 10.1088/1748-9326/6/4/045501
[119] Gamon J A, Kovalchuck O, Wong C Y S, Harris A, Garrity S R. Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors. Biogeosciences, 2015, 12: 4149-4159.
doi: 10.5194/bg-12-4149-2015
[120] 白宗璠, 竞霞, 张腾, 董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病. 作物学报, 2020, 46: 1248-1257.
Bai Z F, Jing X, Zhang T, Dong Y Y. Canopy SIF synergize with total spectral reflectance optimized by the MDBPSO algorithm to monitor wheat stripe rust. Acta Agron Sin, 2020, 46: 1248-1257 (in Chinese with English abstract).
[121] Cheng Y B, Middleton E, Zhang Q Y, Karl H, Petya C, Lawrence C, Bruce C, William K, Craig D. Integrating solar induced fluorescence and the photochemical reflectance index for estimating gross primary production in a cornfield. Remote Sens, 2013, 5: 6857-6879.
doi: 10.3390/rs5126857
[122] Poblete T, Camino C, Beck P S A, Hornero A, Kattenborn T, Saponari M, Boscia D, Nava-Cortés J A, Zarco-Tejada P J. Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: assessing bandset reduction performance from hyperspectral analysis. ISPRS J Photogramm Remote Sens, 2020, 162: 27-40.
doi: 10.1016/j.isprsjprs.2020.02.010
[123] Calderón R, Navas-Cortés J A, Lucena C, Zarco-Tejada P J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens Environ, 2013, 139: 231-245.
doi: 10.1016/j.rse.2013.07.031
[124] 蔡成静, 王海光, 安虎, 史延春, 黄文江, 马占鸿. 小麦条锈病高光谱遥感监测技术研究. 西北农林科技大学学报(自然科学版), 2005, 33(6):31-36.
Cai C J, Wang H G, An H, Shi Y C, Huang W J, Ma Z H. Remote sensing research on monitoring technology of wheat stripe rust. J Northwest Agric For Univ (Nat Sci Edn) 2005, 33(6):31-36 (in Chinese with English abstract).
[1] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[2] 白宗璠,竞霞,张腾,董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病[J]. 作物学报, 2020, 46(8): 1248-1257.
[3] 侯红乾,林洪鑫,刘秀梅,冀建华,刘益仁,蓝贤瑾,吕真真,周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响[J]. 作物学报, 2020, 46(02): 280-289.
[4] 吴含玉,张雅君,张旺锋,王克如,李少昆,姜闯道. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制[J]. 作物学报, 2019, 45(2): 248-255.
[5] 高阳,刘卫国,李淑贤,刘婷,周涛,杜勇利,张熠,李碧琴,杨文钰. 荫蔽锻炼对大豆苗期光合特性的影响[J]. 作物学报, 2019, 45(1): 91-99.
[6] 王利民,杨玲波,刘佳,杨福刚,姚保民. GF-1和MODIS影像冬小麦长势监测指标NDVI的对比[J]. 作物学报, 2018, 44(7): 1043-1054.
[7] 王利民, 刘佳, 杨福刚, 杨玲波, 姚保民, 王小龙. 基于GF-1卫星遥感数据识别京津冀冬小麦面积[J]. 作物学报, 2018, 44(05): 762-773.
[8] 谌俊旭,黄山,范元芳,王锐,刘沁林,杨文钰*,杨峰*. 单作套作大豆叶片氮素积累与光谱特征[J]. 作物学报, 2017, 43(12): 1835-1844.
[9] 许耀照,曾秀存,张芬琴,孙佳,孙万仓,武军艳,方彦,刘自刚,孙柏林. 白菜型冬油菜叶片结构和光合特性对冬前低温的响应[J]. 作物学报, 2017, 43(03): 432-441.
[10] 刘凌云,刘浩,赵晶,王艳霞,王棚涛. 拟南芥低叶绿素荧光LCF3基因的克隆与功能分析[J]. 作物学报, 2016, 42(05): 690-695.
[11] 剧成欣,陶进,钱希旸,顾骏飞,张耗,赵步洪,刘立军,王志琴,杨建昌. 不同年代中籼水稻品种的叶片光合性状[J]. 作物学报, 2016, 42(03): 415-426.
[12] 叶露幻,沈唯军,郑宝刚,宋涛,陈国祥,吕川根. 两优培九剑叶衰老过程光合膜功能及蛋白质复合物的变化[J]. 作物学报, 2013, 39(11): 2030-2038.
[13] 杜伟莉,高杰,胡富亮,郭德林,张改生,张仁和,薛吉全. 玉米叶片光合作用和渗透调节对干旱胁迫的响应[J]. 作物学报, 2013, 39(03): 530-536.
[14] 肖华贵,杨焕文,饶勇,杨斌,朱英. 甘蓝型油菜黄化突变体的光合特性及叶绿素荧光参数分析[J]. 作物学报, 2013, 39(03): 520-529.
[15] 张子山,李耕,高辉远,刘鹏,杨程,孟祥龙. 玉米持绿与早衰品种叶片衰老过程中光化学活性的变化[J]. 作物学报, 2013, 39(01): 93-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!