欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (03): 530-536.doi: 10.3724/SP.J.1006.2013.00530

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米叶片光合作用和渗透调节对干旱胁迫的响应

杜伟莉,高杰,胡富亮,郭德林,张改生*,张仁和*,薛吉全   

  1. 西北农林科技大学农学院 / 农业部西北旱区玉米生物学与遗传育种国家重点实验室,陕西杨凌 712100
  • 收稿日期:2012-06-26 修回日期:2012-11-16 出版日期:2013-03-12 网络出版日期:2012-12-11
  • 通讯作者: 张改生, E-mail: zhanggaisheng18@sohu.com; 张仁和, E-mail: zhangrenhe1975@yahoo.com.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118604)和国家自然科学基金项目(30971722)资助。

Responses of Drought Stress on Photosynthetic Trait and Osmotic Adjustment in Two Maize Cultivars

DU Wei-Li,GAO Jie,HU Fu-Liang,GUO De-Lin,ZHANG Gai-Sheng*,ZHANG Ren-He*,XUE Ji-Quan   

  1. College of Agronomy, Northwest A & F University / Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Yangling 712100, China?
  • Received:2012-06-26 Revised:2012-11-16 Published:2013-03-12 Published online:2012-12-11
  • Contact: 张改生, E-mail: zhanggaisheng18@sohu.com; 张仁和, E-mail: zhangrenhe1975@yahoo.com.cn

摘要:

2个不同抗旱性玉米品种郑单958 (抗旱性强)陕单902 (抗旱性弱)为材料,采用盆栽控水试验,设置3个干旱处理(轻度干旱、中度干旱、重度干旱)和正常灌水,研究了干旱胁迫对2个玉米品种气体交换、叶绿素荧光参数和渗透调节物质的影响。结果显示, 重度干旱造成2个玉米品种叶片光合机构紊乱,破坏细胞膜完整性;同时增加了渗透调节物质,这对增强叶片的保水能力,维持光合速率有重要的作用。但与陕单902相比,干旱胁迫下郑单958表现出较高的最大净光合速率(Pnmax)表观量子效率(AQY),光饱和点(LSP),最大电子传递速率(Jmax),最大羧化速率(Vcmax)PSII的实际量子产量(ΦPSII)和光化学猝灭系数(qP);较高的脯氨酸(Pro)和可溶性糖含量(SS);较低的丙二醛含量(MDA)。这些结果表明,干旱胁迫下抗旱品种郑单958具有较强的渗透物质能力,减轻细胞膜质过氧化程度,维持较高的光合性能是其适应干旱环境的生理基础。

关键词: 玉米, 干旱胁迫, 光响应, 叶绿素荧光参数, 渗透调节

Abstract:

The responses of gas exchange, chlorophyll fluorescence parameters and osmotic adjustment were studied in two different maize hybrids Zhengdan 958 (drought resistance) and Shaandan 902 (drought sensitive) under three different drought stresses (mild drought, moderate drought, severe drought) and normal irrigation in pot experiment. The results showed that drought stress caused disorder in photosynthesis, damage in the integrity of cellular membranes and increase the amounts of osmotic active substance (proline and soluble sugar) in both two cultivars. Thus these may have an important role in acclimation process to drought stress. However, compared with drought-stressed Shaandan 902, drought-stressed Zhengdan 958 showed higher values of maximum leaf net photosynthetic rate (Pnmax), apparent quantum efficiency (AQY), light saturation point (LSP), maximum rate of electron transport driving RuBP regeneration (Jmax), maximum rate of RuBP carboxylatuin (Vcmax), PSII actual quantum yield (ΦPSII) and photochemical quenching (qP); higher contents of soluble sugars and proline and lower content of MDA. These results indicate that Zhengdan 958 have a better self-protection of photosynthetic system, greater accumulation of substances for osmotic adjustment for eliminating the negative effects on cellular membranes may be the major physiological traits in the adapt ability to drought conditions.

Key words: Maize, Drought stress, Light responses of photosynthesis, Chlorophyll fluorescence parameters, Osmotic adjustment

[1]Campos H, Cooper M, Habben J E, Edmeades G O, Schussler J R. Improving drought tolerance in maize: a view from industry. Field Crops Res, 2004, 90: 19–34



[2]Zhang R-H(张仁和), Xue J-Q(薛吉全), Pu J(浦军), Zhao B(赵兵), Zhang X-H(张兴华), Zhang Y-J(郑友军), Bu L-D(卜令铎). Influence of drought stress on plant growth and photosynthetic traits in maize seedlings. Acta Agron Sin (作物学报), 2011, 37(3): 521−528 (in Chinese with English abstract)



[3]Xu D-Q(许大全). Photosynthetic Efficiency (光合作用效率). Shanghai: Shanghai Scientific and Technical Publishers, 2002. pp 821–834 (in Chinese)



[4]Erice G, Louahlia S, Irigoyen J J, Díaz M S, Alami I T, Avice J C. Water use efficiency, transpiration and net CO2 exchange of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Environ Exp Bot, 2011, 72: 123−130



[5]Pinheiro C, Chaves M M. Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot, 2011, 62: 869–882



[6]Nielsen D C, Vigil M F, Benjamin J G. The variable response of dry land corn yield to soil water content at planting. Agr Water Manage, 2009, 96: 330–336



[7]Li R H, Guo P G, Baum M, Grando S, Ceccarelli S. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric Sci China, 2006, 5: 751−757



[8]Jiang G-M(蒋高明). Plant Physioecology (植物生理生态学). Beijing: Higher Education Press, 2004. pp 24–28 (in Chinese)



[9]Ding L, Wang K J, Jiang G M, Li Y G, Jiang C D, Liu M Z, Niu S L, Peng Y. Diurnal variation of gas exchange, chlorophyll fluorescence and xanthophylls cycle components of maize hybrids released in different years. Photosynthetica, 2006, 44: 26–31



[10]Levitt J. Responses of Plants to Environmental Stresses: Water, Radiation, Salt and Other Stresses, 2nd edn. New York: Academic Press, 1980. pp 25–280



[11]Lin Y-C(林叶春), Zeng Z-H(曾昭海), Ren C-Z(任长忠), Li Z-J(李志坚), Guo L-C(郭来春), Yang X-C(杨学超), Wang C-L(王春龙), Qian X(钱欣), Hu Y-G(胡跃高). Effects of partial root zone irrigation on leaf photosynthetic curves and chlorophyll fluorescence parameters in naked oat. Acta Agron Sin (作物学报), 2012, 38(6): 1062–1072 (in Chinese with English abstract)



[12]Shao H B, Liang Z S, Shao M A. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids and Surfaces B: Biointerfaces, 2006, 47: 132–139



[13]Babita M, Maheswari M, Rao L M, Shanker A K, Rao D G. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environ Exp Bot, 2010, 69: 243–249



[14]Aroca R, Irigoyen J J, Sánchez-díaz M. Drought enhances maize chilling tolerance: II. photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant, 2003, 117: 540–549



[15]Ephrath J E. The effects of drought stress on leaf elongation, photosynthesis and transpiration rate in maize leaves. Photosynthetica, 1991, 25: 607–619



[16]Yousifi N, Slama I, Ghnaya T, Savoure A., Abdelly C. Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations. Comptes Rendus Biologies, 2010, 333: 205–213



[17]Baker N R, Rosenqvist E. Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot, 2004, 55: 1607–1621



[18]Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res, 1986, 10: 51–62



[19]Zhang R-H(张仁和), Ma G-S(马国胜), Bu L-D(卜令铎), Shi J-T(史俊通) Xue J-Q(薛吉全). Appraisement and comprehensive evaluation of different genotype maize cultivars for drought resistance. Seed (种子), 2009, 28(10): 91–93 (in Chinese with English abstract)



[20]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Plant Physiol, 1982, 33: 317–345



[21]Herrick J D, Thomas R B. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweet gum (Liquidambar styraciflua) in a forest ecosystem. Tree Physiol, 1999, 19: 779–786



[22]Ethier G J, Livingston N J. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ, 2004, 27: 137–153



[23]Demmig-Adams B, Adams W W, Baker D H, Logan B A, Bowling D R, Verhoreven A S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant, 1996, 98: 253–264



[24]Gao J-F(高俊凤). Plants Physiology Experimentation Guidance (植物生理学实验技术). Xi’an: The World Press, 2000. pp 101–103 (in Chinese)



[25]Zhang S-R(张守仁). A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chin Bull Bot (植物学通报), 1999, 16(4): 444–448 (in Chinese with English abstract).



[26]Li G(李耕), Gao H-Y(高辉远), Zhao B(赵斌), Dong S-T(董树亭), Zhang J-W(张吉旺), Yang J-S(杨吉顺), Wang J-F(王敬锋), Liu P(刘鹏). Effects of drought stress on activity of photosynthesis in leaves of maize at grain filling stage. Acta Agron Sin (作物学报), 2009, 35(10): 1916–1922 (in Chinese with English abstract)



[27]Efeoglu B, Ekmekci Y, Cicek N. Physiological responses of three maize cultivars to drought stress and recovery. South Afr J Bot, 2009, 75: 34–42



[28]Massacci A, Nabiv S M, Pietrosanti L, Nematov S K, Chernikova T N, Thor K, Leipner J. Response of photosynthesis apparatus of cotton to the onset of drought stress under field conditions by gas change analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem, 2008, 46: 189–195



[29]Mishra K B, Iannacone R, Petrozza A, Mishra A, Armentano N, Vecchia G L, Trtílek M, Cellini F, Nedbal L. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci, 2012, 182: 79−86



[30]Bai L P, Sui F G, Ge T D, Sun Z H, Lu Y Y, Zhou G S. Effect of Soil drought Stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere, 2006, 16: 326–332



[31]Campos K F, Carvalho K, Souza F S, Marur C J, Pereira L F, Vieira L G. Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot, 2011, 72: 242−250

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!