欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (9): 1400-1410.doi: 10.3724/SP.J.1006.2018.01400

• 研究论文 • 上一篇    下一篇

基于甘蔗热带种(LA-purple)全基因组序列的SSR开发及特征分析

王恒波(),肖乃衍,朱专为,刘翠翠,IntikhabALAM,陈平华,卢运海()   

  1. 福建农林大学农业部福建甘蔗生物学与遗传育种重点实验室 / 作物遗传育种与综合利用教育部重点实验室 / 作物科学学院, 福建福州 350002
  • 收稿日期:2017-11-20 接受日期:2018-03-26 出版日期:2018-09-10 网络出版日期:2018-04-09
  • 通讯作者: 卢运海
  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项(CARS-20-1);国家甘蔗工程技术研究中心2017年主任课题基金项目(ptjh1500117) 资助

Development and Characterization of SSR Markers from the Whole Genome Sequences of Saccharum officinarum (LA-purple)

Heng-Bo WANG(),Nai-Yan XIAO,Zhuan-Wei ZHU,Cui-Cui LIU,ALAM Intikhab,Ping-Hua CHEN,Yun-Hai LU()   

  1. Key Laboratory of Ministry of Agriculture for Sugarcane Biology and Genetic Breeding (Fujian), Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2017-11-20 Accepted:2018-03-26 Published:2018-09-10 Published online:2018-04-09
  • Contact: Yun-Hai LU
  • Supported by:
    This study was supported by the China Agriculture Research System(CARS-20-1);National Sugarcane Engineering Research Center of Director Project Fund in 2017 (ptjh1500117)

摘要:

现代甘蔗栽培品种(2n = 100~130)是由甘蔗热带种(2n = 80)与割手密(2n = 40~128)种间杂交而来, 形成异源多倍体、非整倍体作物, 使得甘蔗栽培品种中80%~90%的染色体来源于热带种。开发热带种基因组SSR分子标记, 有助于甘蔗遗传多样性分析、分子标记辅助选择、遗传图谱的构建等。本研究基于热带种LA-purple的全基因组测序数据的255 398个预测基因序列(累计总长为1 029 222 285 bp), 利用Perl程序与生物信息学软件结合, 发掘SSR位点, 获得了153 150个SSR位点, 平均每1.67个基因有1个SSR位点, 其中二、三核苷酸重复基序分别为39 556个和50 072个, 占总SSR位点数的58.5%。在二核苷酸重复基序中, TA/AT所占比例最高, 占41.4%, CG/GC所占比例最低, 占4.6%; 在三核苷酸碱基重复基序中, TGT/ACA所占比例最高, 为15.6%。在TA/AT重复类型中选取100个基序重复次数在60~90之间的SSR位点, 进行引物设计与合成, 在12个甘蔗属材料中进行PCR扩增分析, 从中筛选出52对具有多态性SSR引物, 其中有27对引物在研究的2个甘蔗栽培品种间表现为多态。这些基因组SSR标记的开发, 不仅可以用于甘蔗栽培品种DNA指纹图谱分析, 而且为甘蔗属不同种的遗传图谱构建、遗传多样性分析和重要性状的遗传机制解析奠定基础, 为甘蔗分子育种研究提供重要支撑。

关键词: 甘蔗, 基因组, SSR, 标记开发, 多态性

Abstract:

Modern sugarcane cultivars (2n = 100-130) are derived from interspecific hybridization and backcross breeding between Saccharum officinarum (2n = 80) and Saccharum spontaneum (2n = 40-128), forming polyploid and aneuploid crops. The main components (80%-90%) of the sugarcane cultivars’ genome are originated from S. officinarum. The development and mining of genomic SSR molecular marker of S. officinarum, will benefit sugarcane genetic diversity analysis, molecular marker assisted selection, and construction of genetic maps. In this study, we explored the SSR loci from 255 398 predicted gene sequences (with a cumulative length of 1 029 222 285 bp) derived from the whole genome sequencing project of a S. officinarum clone LA-purple, by combining Perl program with bioinformatics software. A total of 153 150 SSR loci, with an average of 1.67 genes per SSR locus, were identified, of which 39 556 (25.8%) were dinucleotide repeat motifs and 50 072 (32.7%) were tri-nucleotide repeat motifs. Among the dinucleotide repeat motifs, TA/AT had the highest proportion, accounting for 41.4%, while CG/GC had the lowest proportion, accounting for only 4.6%. Among the trinucleotide repeat motifs, TGT/ACA had the highest proportion, accounting for 15.6%. One hundred SSR loci with 60-90 repeats of TA/AT motifs were selected and analyzed by PCR amplification in 12 representative Saccharum clones, of which 52 were polymorphic among the 12 clones and 27 were polymorphic between the tested two modern sugarcane cultivars. The genome-wide development of these gene-based SSR markers will not only facilitate the DNA fingerprinting analysis of sugarcane cultivars, but also help to construct the genetic maps, analyze the genetic diversity, study the genetic mechanism of important traits in Saccharum species, and provide important support to the molecular breeding in sugarcane.

Key words: sugarcane, genome sequence, SSR, marker development, polymorphism

表1

供试甘蔗种质资源名称及来源"

序号
Code
名称
Name
类型
Type
倍性
Ploidy
1 57NG208 大茎野生种 S. robustum
2 NG77-004 大茎野生种 S. robustum
3 云南75-2-11 YN75-2-11 割手密 S. spontaneum 八倍体 Octoploid
4 福建89-1-1 FJ89-1-1 割手密 S. spontaneum 九倍体 Nonaploid
5 广东21 GD21 割手密 S. spontaneum 十倍体 Decaploid
6 贵州78-2-28 GZ78-2-28 割手密 S. spontaneum 十二倍体 Dodecaploid
7 黑车里本 Black cheribon 热带种 S. officinarum 八倍体 Octoploid
8 路达士 Loethers 热带种 S. officinarum 八倍体 Octoploid
9 克里斯塔林娜 Crystalina 热带种 S. officinarum 八倍体 Octoploid
10 拔地拉 Badila 热带种 S. officinarum 八倍体 Octoploid
11 桂糖35 GT35 栽培种 Saccharun hybrid
12 科5 K5 栽培种 Saccharun hybrid

Table 2

Frequency distribtiom of various types of simple sequence repent(SSR)motifs with different numbers of repeats among the genes of S.officinarum LA-purple genome"

图1

二核苷酸重复基序的次数分布"

图2

三核苷酸重复基序的次数分布"

图3

4对不同SSR引物在12个供试甘蔗属材料上的代表性PCR扩增图谱1: 57NG208; 2: NG77-004; 3: 云南75-2-11; 4: 福建89-1-1; 5: 广东21; 6: 贵州78-2-28; 7: 黑车里本; 8: 路达士; 9: 克里斯塔林娜; 10: 拔地拉; 11: 桂糖35; 12: 科5; M: 100 bp DNA ladder。"

Table 3

SSR primers information of sugarcane with amplified polymorphism"

图4

基于SSR分子标记的12个甘蔗属材料的UPGMA聚类分析"

[1] 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露 . 国外甘蔗产业发展现状. 世界农业, 2015, ( 8):147-152
Liu Y Q, Li Y P, Liang W H, Song Q D, Qin X L, Ye L . Current situation of sugarcane industry in the world. World Agric, 2015, ( 8):147-152 (in Chinese with English abstract)
[2] 李明, 田洪春, 黄智刚 . 我国甘蔗产业发展现状研究. 中国糖料, 2017,39(1):67-70
Li M, Tian H C, Huang Z G . Research on the development status of sugarcane industry in China. Sugar Crops Chin, 2017,39(1):67-70 (in Chinese with English abstract)
[3] Hermann S, Aitken K S, Jackson P A, George A W, Piperidis N, Wei X, Kilian A, Detering F . Evidence for second division restitution as the basis for 2 n+n maternal chromosome transmission in a sugarcane cross. Euphytica, 2012,187:359-368
[4] D'Hont A ,Grivet L, Feldmann P, Glaszmann J C, Rao S, Berding N., Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp) by molecular cytogenetics. Mol Gen Genet, 1996,250:405-413
[5] Piperidis G, Piperidis N , D’Hont A. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Genet Genom, 2010,284:65-73
[6] Wang H B, Chen P H, Yang Y Q ,D’Hont A, Lu Y H. , Molecular insights into the origin of the brown rust resistance gene Bru1 among Saccharum species. Theor Appl Genet, 2017,130:2431-2443
[7] Ellegren H . Microsatellites: simple sequences with complex evolution. Nat Rev Genet, 2004,5:435-445
doi: 10.1038/nrg1348 pmid: 15153996
[8] Sharma P . Mining microsatellites in eukaryotic genomes. Trends Biotechnol, 2007,25:490-498
doi: 10.1016/j.tibtech.2007.07.013 pmid: 17945369
[9] Smith D N, Devey M E . Occurrence and inheritance of microsatellites in Pinus radia. Genome, 1994,37:977-983
[10] Morgante M, Hanafey H, Powell W . Microsatellites are preferentially associated with nonrepetitive DNA in plant genome. Nat Genet, 2002,30:194-200
doi: 10.1063/1.363554 pmid: 11799393
[11] Klintschar M, Dauber E M, Ricci U, Cerri N, Immel U D, Kleiber M, Mayr W R . Haplotype studies support slippage as the mechanism of germline mutations in short tandem repeats. Electrophoresis, 2004,25:3344-3348
[12] 张增翠, 侯喜林 . SSR分子标记开发策略及评价. 遗传, 2004,26:763-768
Zhang Z C, Hou X L . Strategies for development of SSR molecular markers. Hereditas, 2004,26:763-768
[13] Cordeiro G M, Casu R ,McIntyre C L, Manners J M, Henry R J. , Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to Erianthus and Sorghum. Plant Sci, 2001,160:1115-1123
[14] Aitken K S, Jackson P A ,McIntyre C L. , A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet, 2005,110:789-801
[15] Pan Y B . Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech, 2006,8:246-256
[16] Edmé S J, Glynn N G, Comstock J C . Genetic segregation of microsatellite markers in Saccharum officinarum and S. spontaneum. Heredity, 2006,97:366-375
[17] Aitken K S, Jackson P A , McIntyre C L. , Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar × Saccharum officinarum population. Theor Appl Genet, 2006,112:1306-1317
[18] Garcia A A, Kido E A, Meza A N, Souza H M, Pinto L R, Pastina M M, Leite C S, Silva J A, Ulian E C, Figueira A, Souza A P . Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet, 2006,112:298-314
[19] Aitken K S, Jackson P A, McIntyre C L. , Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome, 2007,50:742-756
[20] Oliveira K M, Pinto L R, Marconi T G, Mollinari M, Ulian E C, Chabregas S M, Falco M C, Burnquist W, Garcia A A, Souza A P . Characterization of new polymorphic functional markers for sugarcane. Genome, 2009,52:191-209
doi: 10.1139/g08-105 pmid: 19234567
[21] Parida S K, Kalia S K, Kaul S, Dalal V, Hemaprabha G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma T R, Srivastava P S, Singh N K, Mohapatra T . Informative genomic microsatellite markers for efficient genotyping applications in sugarcane . Theor Appl Genet, 2009,118:327-338
doi: 10.1007/s00122-008-0902-4 pmid: 18946655
[22] 刘新龙, 毛钧, 陆鑫, 马丽 Aitken K S, Jackson P A, 蔡青, 范源洪. , 甘蔗SSR和AFLP分子遗传连锁图谱构建. 作物学报, 2010,36:177-183
Liu X L, Mao J, Lu X, Ma L, Aitken K S, Jackson P A, Cai Q, Fan Y H . Construction of molecular genetic linkage map of sugarcane based on SSR and AFLP markers. Acta Agron Sin, 2010,36:177-183 (in Chinese with English abstract)
[23] Liu P, Que Y X, Pan Y B . Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing . Sugar Tech, 2011,13:129-136
[24] Andru S, Pan Y B, Thongthawee S, Burner D M, Kimbeng C A . Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’: I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor Appl Genet, 2011,123:77-93
[25] Devarumath R M, Kalwade S B, Kawar P G, Sushir K V . Assessment of genetic diversity in sugarcane germplasm using ISSR and SSR markers. Sugar Tech, 2012,14:334-344
doi: 10.1007/s12355-012-0168-7
[26] 黄启星, 张雨良, 王俊刚, 伍苏然, 张树珍, 郭安平 . 甘蔗EST-SSR标记的开发和多样性分析. 热带农业科学, 2012,32(12):33-42
Huang Q X, Zhang Y L, Wang J G, Wu S R, Zhang S Z, Guo A P . Data-mining and diversity analysis of EST-SSRs from sugarcane. J Trop Agric, 2012,32(12):33-42 (in Chinese with English abstract)
[27] Singh R K, Jena S N, Khan S, Yadav S, Banarjee N, Raghuvanshi S, Bhardwaj V, Dattamajumder S K, Kapur R, Solomon S, Swapna M, Srivastava S, Tyagi A K . Development, cross- species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane. Gene, 2013,524:309-329
[28] Shamshad U H, Kumar P, Singh R K, Verma K S, Bhatt R, Sharma M, Kachhwaha S, Kothari S L . Assessment of functional EST-SSR markers (sugarcane) in cross-species transferability, genetic diversity among Poaceae plants, and bulk segregation analysis. Genet Res Int, 2016,2016:7052323
[29] 刘新龙, 李旭娟, 刘洪博, 马丽, 徐超华, 范源洪 . 云南甘蔗常用亲本资源遗传多样性的SSR分析. 植物遗传资源学报, 2015,6:1214-1222
Liu X L, Li X J, Liu H B, Ma L, Xu C H, Fan Y H . Genetic diversity analysis of Yunnan commonly-used parents by using SSR marker. J Plant Genet Resour, 2015,6:1214-1222 (in Chinese with English abstract)
[30] Liu P, Chandra A, Que Y, Chen P H, Grisham M, White W, Dalley C, Tew T, Pan Y B . Identification of quantitative trait loci controlling sucrose content based on an enriched genetic linkage map of sugarcane (Saccharum spp. hybrids) cultivar LCP 85-384. Euphytica, 2016,207:527-549
[31] Wang J, Roe B, Macmil S, Yu Q, Murray J E, Tang H, Chen C, Najar F, Wiley G, Bowers J ,Van Sluys M A, Rokhsar D S, Hudson M E, Moose S P, Paterson A H, Ming R. , Micro-collinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics, 2010,11:261-278
doi: 10.1186/1471-2164-11-261 pmid: 2882929
[32] Murray H G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980,8:4321-4325
doi: 10.1093/nar/8.19.4321 pmid: 324241
[33] 梅嘉洺, 黄小霞, 王咏, 朱美兰, 林辉, 阳宴清, 卢运海 . 46份菌草种质资源PEPC基因的PCR-RFLP多样性分析. 热带农业科学, 2015,35(11):45-50
Mei J M, Huang X X, Wang Y, Zhu M L, Lin H, Yang Y Q, Lu Y H . Polymorphism analysis of PEPC gene family among 46 Juncao germplasms by PCR-RFLP. Chin J Trop Agric, 2015,35(11):45-50 (in Chinese with English abstract)
[34] Schlötterer C . Evolutionary dynamics of microsatellite DNA. Chromosoma. 2000,109:365-371
doi: 10.1007/s004120000120 pmid: 11072791
[35] Gerard L C, Jeanne J, Samantha J B ,ifeng T ,Roeland E V, Jack A M,Herman V E, Ben V. , Large-scale identification of polymorphic microsatellites using an in silico approach. BMC Bioinformatics, 2008,9:374-386
doi: 10.1186/1471-2105-9-374 pmid: 2562394
[36] Lawson M J, Zhang L . Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biol, 2006,7:R14
[37] Zhang Z, Deng Y, Tan J ,Hu S, Yu J, Xue Q., A genome-wide microsatellite polymorphism database for the indica and japonica rice. DNA Res, 2007,14:37-45
doi: 10.1093/dnares/dsm005 pmid: 2779893
[38] Blair M W, Buendia H F, Giraldo M C, Metais I, Peltier D . Characterization of AT-rich microsatellites in common bean (Phaseolus vulgaris L.). Theor Appl Genet, 2008,118:91-103
[39] Iniguez F L, Voort A V, Osborn T C . Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet, 2008,117:977-985
[40] Yonemaru J I, Ando T, Mizubayashi T, Kasuga S, Matsumoto T, Yano M . Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum ( Sorghum bicolor(L.) Moench). DNA Res, 2009,16:187-193
[41] Song Q, Jia G, Zhu Y, Grant D, Nelson R T, Wang E Y, Hyten D L, Cregan P B . Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR1.0) in Soybean. Crop Sci, 2010,50:1950-1960
[42] 郑燕, 张耿, 吴为人 . 禾本科植物微卫星序列的特征分析和比较. 基因组学与应用生物学, 2011,30:513-520
Zheng Y, Zhang G, Wu W R . Characterization and comparison of microsatellites in gramineae. Genom Appl Biol, 2011,30:513-520 (in Chinese with English abstract)
[43] 仪泽会, 卢有飞, 郭晓芹, 惠麦侠, 张鲁刚, 张明科 . 大白菜简单序列重复(SSR)和插入/缺失(InDel)标记的开发及通用性分析. 农业生物技术学报, 2012,12:1398-1406
Yi Z H, Lu Y F, Guo X Q, Hui M X, Zhang L G, Zhang M K . Development of simple sequence repeat (SSR) and insertion/deletion (InDel) markers in Chinese cabbage (Brassica rapa ssp. pekinesis) and analysis of their transferability.. J Agric Biotechnol, 2012,12:1398-1406 (in Chinese with English abstract)
[44] 原志敏 . 玉米全基因组SSRs分子标记开发与特征分析. 四川农业大学硕士学位论文, 四川雅安, 2013
Yuan Z M . Development and Characterization of SSR Markers Providing Genome-wide Coverage and High Resolution in Maize. MS Thesis of Sichun Agriculture University, Ya’an, China, 2013 (in Chinese with English abstract)
[45] 曹恒春, 王毅, 黄莉莎, 王玉军, 于元杰, 杨龙 . 可可全基因组SSR标记的开发及分析. 山东农业大学学报(自然科学版), 2013,44:340-344
Cao H C, Wang Y, Huang L S, Wang Y J, Yu Y J, Yang L . Large-scale development of SSR markers in the genome of cacao . J Shandong Agric Univ(Natural Science Edition), 2013,44:340-344 (in Chinese with English abstract)
[46] Wei X, Wang L, Zhang Y, Qi X, Wang X, Ding X, Zhang J, Zhang X . Development of simple sequence repeat (SSR) markers of sesame (Sesamum indicum) from a genome survey. Molecules, 2014,19:5150-5162
[47] 童治军, 焦芳婵, 肖炳光 . 普通烟草及其祖先种基因组SSR位点分析. 中国农业科学, 2015,48:2108-2117
Tong Z J, Jiao F C, Xiao B G . Analysis of SSR loci in Nicotina tabacum genome and its two ancestral species genome. Sci Agric Sin, 2015,48:2108-2117 (in Chinese with English abstract)
[48] Song X, Ge T, Li Y, Hou X . Genome-wide identification of SSR and SNP markers from the non-heading Chinese cabbage for comparative genomic analyses. BMC Genomics, 2015,16:328
[49] Motalebipour E Z, Kafkas S, Khodaeiaminjan M, Çoban N, Gözel H . Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: Development of novel SSR markers and genetic diversity in Pistacia species. BMC Genomics, 2016,17:998
[50] Gil J, Um Y, Kim S, Kim O T, Koo S C, Reddy C S, Kim S C, Hong C P, Park S G, Kim H B, Lee D H, Jeong B H, Chung J W, Lee Y . Development of genome-wide SSR markers from Angelica gigas Nakai using next generation sequencing. Genes(Basel), 2017,8:E238
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[4] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[5] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[6] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[7] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[8] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[9] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[10] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[11] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[12] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[13] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[14] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[15] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!