欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (11): 1725-1732.doi: 10.3724/SP.J.1006.2018.01725

• 耕作栽培·生理生化 • 上一篇    下一篇

不同种植年限对枸杞根系及土壤环境的影响

胥生荣1,3,张恩和1,*(),马瑞丽1,3,王琦2,刘青林1,崔佳佳1   

  1. 1 甘肃农业大学农学院, 甘肃兰州 730070
    2 甘肃农业大学草业学院, 甘肃兰州 730070
    3 中国科学院西北高原生物研究所 / 青海省青藏高原特色生物资源研究重点实验室, 青海西宁 810008
  • 收稿日期:2017-10-16 接受日期:2018-08-20 出版日期:2018-11-12 网络出版日期:2018-09-06
  • 通讯作者: 张恩和
  • 基金资助:
    本研究由国家自然科学基金项目(31560380);青海省青藏高原特色生物资源研究重点实验室开放课题(2017-ZJ-Y10)

Effects of Planting Years on the Root System and Soil Environment of Lycium barbarum L.

Sheng-Rong XU1,3,En-He ZHANG1,*(),Rui-Li MA1,3,Qi WANG2,Qing-Lin LIU1,Jia-Jia CUI1   

  1. 1 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2 College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3 Northwest Institute of Plateau Biology, Chinese Academy of Sciences / Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining 810008, Qinghai, China
  • Received:2017-10-16 Accepted:2018-08-20 Published:2018-11-12 Published online:2018-09-06
  • Contact: En-He ZHANG
  • Supported by:
    The study was supported by the National Natural Science Foundation of China(31560380);the Open Project of Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources Grant(2017-ZJ-Y10)

摘要:

宁夏枸杞是西北干旱地区重要的经济作物, 为了进一步明确不同种植年限枸杞根系及土壤环境的动态变化, 以不同种植年限‘宁杞1号’苗木及其根际土壤为试验材料, 研究枸杞根系生理特性以及土壤酶活性、有机碳、微生物数量和多样性等根际土壤理化特性的变化规律。结果表明, 随着种植年限的增加, 根系比导率先逐渐增大, 种植5年开始逐年减小; 根系活力逐渐减小, 根系相对电导率逐渐增大, 虽然7年生植株根系相对电导率减小, 但减小程度不显著; 根围0~150 cm深处土壤平均含水量在前5年内逐渐增大, 种植7年地块60 cm以上浅层土壤水分显著降低; 根围0~100 cm深处土壤孔隙度不断减小; 土壤微生物总量趋于上升, 其中, 土壤细菌和真菌数量趋于上升, 放线菌数量变化不显著; 土壤微生物平均颜色变化率(AWCD)逐年降低, Shannon指数(H)和丰富度指数(S)变化趋势相对一致, 为先下降后上升; 土壤有机碳活性逐渐下降, 虽然种植5年地块的LFOC活性和种植7年地块的DOC活性有小幅上升, 但总体趋势一致; 土壤脱氢酶活性相对稳定, 没有出现显著的增大或降低; 土壤磷酸酶活性一直处于增大趋势; 土壤脲酶、过氧化氢酶、多酚氧化酶以及土壤蔗糖酶活性变化趋势相对一致, 均先减小后增大。综合分析表明, 随着种植年限的增加, 土壤活性、肥力和土壤微生物多样性降低, 土壤微环境对根系生物活性的毒害作用增大; 根系生存环境的变化使根系活性降低, 影响枸杞根系导水率和植株对土壤的水分利用。

关键词: 枸杞, 土壤酶, 土壤微生物, 有机碳, 根系

Abstract:

In order to clarify the dynamic change of root system, in Lycium barbarum L., a main commercial crop distributed in arid land of northwestern China, and soil environment under different planting-years, physiological characteristic of root system, soil enzyme activity, organic carbon, soil microbial quantity and diversity, physical and chemical properties of the rhizosphere soil were monitored for ‘Ningqi 1’ seedlings for five treatments, different continuous cropping years (1, 3, 5, 7, and 10 years). With the increase of planting fixed number of years, the special hydraulic conductivity of roots (Ks, root) increased first and then decreased, the activity of roots remarkably decreased, the relative electric conductivity of roots gradually increased, the relative electric conductivity of root system began to decrease after planting seven years, but the reduction was not significant. The average moisture content of the soil 0-150 cm deep increased in the first five years, and declined after the planting five years, in particular, showed more effect to soil moisture above 60 cm deep. The average soil average porosity in 0-100 cm layer decreased with the increase of planting fixed number of years; the amount of soil rhizosphere microorganism increased, in this case, the number of soil bacteria and fungi increased, and the number of actinomyces did not have significant changes The soil rhizosphere microorganism average well color development (AWCD) decreased with the increase of planting fixed number of years, Shannon index (H) and Richness index (S) decreased firstly and then increased. The soil total organic carbon (TOC) activity decreased with the increase of planting fixed number of years, although light fraction organic carbon (LFOC) activity of planting five years and dissolved organic carbon (DOC) activity of planting seven years had slight rise, their general trend was consistent. The soil dehydrogenase activity was relatively stable, there was no significant change, the soil phosphatase activity increased, urease, catalase, polyphenol oxidase, and sucrase activity had similar changing trend, all of them decreasing first and then increasing. These results suggest that soil activity, fertility and microorganism diversity are decreased with the increase of planting fixed number of years, the toxic effect of soil microenvironment on the biological activity of root system in increased, meanwhile, the root system activity, hydraulic conductivity and water efficiency of soil are decreased by the changes of root system living environment.

Key words: Lycium barbarum L., soil enzyme, soil microorganism, organic carbon, root system

表1

种植年限对根系理化性质的影响"

种植年限
Planting year
根系比导率
Specific conductivity of root (Ks,root) (kg MPa-1 m-2 s-1)
根系活力
Activity of root
(μg g-1 h-1)
根系相对电导率
Relative electric conductivity of root (%)
1年 One year 1.32±0.125 b 482.3±34.5 a 29.4±1.39 d
3年 Three years 1.49±0.201 a 451.7±19.1 b 34.9±2.56 c
5年 Five years 1.40±0.093 ab 449.2±27.3 b 35.7±2.62 bc
7年 Seven years 1.25±0.119 b 426.9±20.5 c 36.9±3.29 a
10年 Ten years 1.16±0.241 c 419.3±14.4 c 36.6±2.84 a

图1

不同种植年限对0~100 cm孔隙度(A)及0~150 cm土壤含水量(B)的影响"

表2

种植年限对根际土壤微生物数量和多样性的影响"

种植年限
Planting year
细菌
Bacterium
(×106 CFU g-1)
真菌
Fungi
(×106 CFU g-1)
放线菌Actinomyces
(×106 CFU g-1)
微生物总量Total
(×106 CFU g-1)
平均颜色
变化率
AWCD
香浓指数Shannon index (H) 丰富度指数
Richness index (S)
1年 One year 28.37±1.31 d 3.99±0.19 d 5.27±0.26 b 37.63±1.47 c 0.78 a 3.13 a 27 a
3年 Three years 30.95±0.93 c 4.83±0.23 c 4.73±0.16 c 40.51±1.14 b 0.73 ab 3.11 a 26 a
5年 Five years 35.16±2.09 a 5.26±0.11 b 5.98±0.24 a 46.40±2.31 a 0.68 b 2.96 b 21 b
7年 Seven years 32.81±1.52 b 6.72±0.21 a 5.16±0.15 b 44.69±1.80 a 0.66 b 3.05 ab 24 a
10年 Ten years 30.19±0.45 c 6.53±0.25 a 5.62±0.17 ab 42.14±0.99 b 0.65 b 3.03 ab 23 ab

图2

种植年限对根际土壤TOC、POC、LFOC、ROC、DOC和MBC含量的影响"

图3

种植年限对根际土壤酶活性的影响"

[1] Mu Z X, Zhang S Q, Zhang L S, Liang A H, Liang Z S . Hydraulic conductivity of whole root system is better than Hydraulic conductivity of single root in correlation with the leaf water status of maize. Bot Stud, 2006,47:145-151
[2] 梁银丽, 陈志杰, 徐福利, 严勇敢, 杜社妮, 张成娥 . 日光温室不同连作年限对黄瓜生理特性的影响. 西北植物学报, 2003,23:1398-1401
Liang Y L, Chen Z J, Xu F L, Yan Y G, Du S N, Zhang C E . The effect of continuous cropping year on physiological characteristics of cucumber in sunlight greenhouse. Acta Bot Boreali- Occident Sin, 2003,23:1398-1401 (in Chinese with English abstract)
[3] 杜静静 . 不同种植年限果园土壤理化性质与酶活性研究. 山西师范大学硕士学位论文, 山西临汾, 2013
Du J J . Research on Soil Physical-chemical Properties and Activities of Soil Enzyme in Apple Orchards with Different Planting Years . MS Thesis of Shanxi Normal University, Linfen, Shanxi, China, 2013 ( in Chinese with English abstract)
[4] 王娟英, 许佳慧, 吴林坤, 吴红淼, 朱铨, 孔露霏, 林文雄 . 不同连作年限怀牛膝根际土壤理化性质及微生物多样性分析. 生态学报, 2017,37:1-9
doi: 10.5846/stxb201606071097
Wang J Y, Xu J H, Wu L K, Wu H M, Zhu Q, Kong L F, Lin W X . Analysis of physicochemical properties and microbial diversity in rhizophere soil of Achyranthes bidentata under different cropping years. Acta Ecol Sin, 2017,37:1-9 (in Chinese with English abstract)
doi: 10.5846/stxb201606071097
[5] Jacobsen C S, Hjelms M H . Agricultural soil, pesticides and microbial diversity. Curr Opin Biotechnol, 2014,27:15-20
doi: 10.1016/j.copbio.2013.09.003 pmid: 24863892
[6] 王义祥, 叶菁, 王成己, 翁伯琦, 黄毅斌 . 不同经营年限对柑橘果园土壤有机碳及其组分的影响. 生态环境学报, 2014,23:1574-1580
Wang Y X, Ye J, Wang C J, Weng B Q, Huang Y B . Effect of different cultivation years on soil organic carbon pools in citrus orchards. Ecol Environ Sci, 2014,23:1574-1580 (in Chinese with English abstract)
[7] 杜俊龙, 孙霞, 黄长福, 李志军, 金俊香, 闫建峰 . 典型干旱荒漠绿洲区不同年限枣园土壤有机碳组成及特征. 水土保持通报, 2016,36(1):33-37
Du J L, Sun X, Huang C F, Li Z J, Jin J X, Yan J F . Composition and characteristics of soil organic carbon in jujube orchard with different plangting years in typical arid desert oasis area. Bull Soil Water Conserv, 2016,36(1):33-37 (in Chinese with English abstract)
[8] Taylor J P, Wilson B, Mills M S, Burns R G . Comparison of microbial numbers and enzymatic activities in surface soil and subsoils using various techniquer. Soil Biol Biochem, 2002,34:387-401
doi: 10.1016/S0038-0717(01)00199-7
[9] 张帆, 田甜, 金宗来, 黄冲平, 唐桂香, 叶庆富, 周伟军 . 新型除草剂丙酯草醚对油菜幼苗生长与根尖细胞活性的影响. 中国农业科学, 2009,42:3522-3529
doi: 10.3864/j.issn.0578-1752.2009.10.0018
Zhang F, Tian T, Jin Z L, Huang C P, Tang G X, Ye Q F, Zhou W J . Effect of new herbicide ZJ0273 on seedling growth and root cell viability of Brassica napus. Sci Agric Sin, 2009,42:3522-3529 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2009.10.0018
[10] 张亮, 程智慧, 周艳丽, 董小艳, 魏玲 . 百合生育期根际土壤微生物和酶活性的变化. 园艺学报, 2008,35:1031-1038
doi: 10.3321/j.issn:0513-353X.2008.07.014
Zhang L, Cheng Z H, Zhou Y L, Dong X Y, Wei L . Variation of microbial biomass and enzyme activities in the rhiosphere soil of lily at different developmental periods. Acta Hortic Sin, 2008,35:1031-1038 (in Chinese with English abstract)
doi: 10.3321/j.issn:0513-353X.2008.07.014
[11] 张林森, 刘富庭, 张永旺, 李雪薇, 李丙智, 胥生荣, 谷洁, 韩明玉 . 不同覆盖方式对黄土高原地区苹果园土壤有机碳组分及微生物的影响. 中国农业科学, 2013,46:3180-3190
Zhang L S, Liu F T, Zhang Y W, Li X W, Li B Z, Xu S R, Gu J, Han M Y . Effects of different mulching on soil organic carbon fractions and soil microbial community of apple orchard in Loess Plateau. Sci Agric Sin, 2013,46:3180-3190 (in Chinese with English abstract)
[12] Garland J L, Mills A L . Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol, 1991,57:2351-2359
[13] Shannon C E. A mathematical theory of communication. In: Eyal de Lara, eds. ACM SIGMOBILE Mobile Computing and Communications Review (MC²R). New York, ACM SIGMOBILE. 2001,5:3-55
[14] Rogers B F, Tate R L . Temporal analysis of the soil microbial community along a toposequence in Pineland soils. Soil Biol Biochem, 2001,33:1389-1401
doi: 10.1016/S0038-0717(01)00044-X
[15] Cohen S, Naor A, Bennink J, Grava A, Tyree M . Hydraulic resistance components of mature apple trees on rootstocks of different vigours. J Exp Bot, 2007,58:4213-4224
doi: 10.1093/jxb/erm281 pmid: 18182426
[16] 牛晓丽, 胡田田, 刘亭亭, 吴雪, 冯璞玉, 刘杰, 李康, 张富仓 . 适度局部水分胁迫提高玉米根系吸水能力. 农业工程学报, 2014,30(22):80-86
doi: 10.3969/j.issn.1002-6819.2014.22.010
Niu X L, Hu T T, Liu T T, Wu X, Feng P Y, Liu J, Li K, Zhang F C . Appropriate partial water stress improving maize root absorbing capacity. Trans CSAE, 2014,30(22):80-86 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2014.22.010
[17] North G B, Nobel P S . Hydraulic conductivity of concentric root tissues ofAgave deserti Engelm. under wet and drying conditions. New Phytol, 1995,130:47-57
[18] Kramer P J, Boyer J S. Water Relation of Plant and Soil. Orlando: Academic Press, 1995. pp 145-147
[19] Wang L D, Yao T, Guo C X, Han F G, Wang F L, Sun T, Zhang Y H . Research progress of soil microbiology. Agric Sci Technol, 2015,16:2367-2371
[20] Petersen D G, Blazewicz S J, Firestone M, Herman D J, Turetsky M, Waldrop M . Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol, 2012,14:993-1008
doi: 10.1111/emi.2012.14.issue-4
[21] Pratscher J, Dumont M G, Conrad R . Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc Natl Acad Sci USA, 2011,108:4170-4175
doi: 10.1073/pnas.1010981108 pmid: 21368116
[22] Jackson L E, Bowles T M, Hodson A K, Lazcano C . Soil mocrobial-root and microbial-rhizosphere processes to increase nitrogen availability and retention in agroecosystems. Curr Opin Environ Sust, 2012,4:517-522
doi: 10.1016/j.cosust.2012.08.003
[23] Hadar Y, Papadopoulou K K . Suppressive Composts: Microbial ecology links between abiotic environments and healthy plant. Annu Rev Phytopathol, 2012,50:133-153
doi: 10.1146/annurev-phyto-081211-172914
[24] Wu L K, Wang J Y, Huang W M, Wu H M, Chen J, Yang Y Q, Zhang Z Y, Lin W X . Plant-microbe rhizosphere interactions mediated byRehmannia glutinosa root exudates under consecutive monoculture. Sci Rep, 2015,5:158-171
[25] 华菊玲, 刘光荣, 黄劲松 . 连作对芝麻根际土壤微生物群落的影响. 生态学报, 2012,32:2936-2942
Hua J L, Liu G R, Huang J S . Effect of continuous cropping of sesame on rhizospheric microbial communities. Acta Ecol Sin, 2012,32:2936-2942 (in Chinese with English abstract)
[26] 邹春娇, 齐明芳, 马建, 武春成, 李天来 . Biolog-ECO解析黄瓜连作营养基质中微生物群落结构多样性特征. 中国农业科学, 2016,49:942-951
Zou C J, Qi M F, Ma J, Wu C C, Li T L . Analysis of soil microbial community structure and diversity in cucumber continuous cropping nutrition medium by Biolog-ECO. Sci Agric Sin, 2016,49:942-951 (in Chinese with English abstract)
[27] van Bruggen A H C, Semenov A M . In search of biological indicators for soil health and disease suppression. Appl Soil Ecol, 2000,15:13-24
doi: 10.1016/S0929-1393(00)00068-8
[28] Shiomi Y, Nishiyama M, Onizuka T, Marumoto T . Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Appl Environ Microbiol, 1999,65:3996-4001
[29] Anwar G, Alec M, Brent C, Denls C, Graham S . A literature review of soil carbon under pasture, horticulture and arable land uses. New Zealand: Agresearch, 2009. pp 45-64
[30] Cakir M, Makineci E, Kumbasli M . Comparative study on soil properties in a picnic and undisturbed area of Belgrad Forest, Istanbul. J Environ Biol, 2010,31:125-128
[31] 谷岩, 邱强, 王振民, 陈喜凤, 吴春胜 . 连作大豆根际微生物群落结构及土壤酶活性. 中国农业科学, 2012,45:3955-3964
Gu Y, Qiu Q, Wang Z M, Chen X F, Wu C S . Effects of soybean continuous cropping on microbial and soil enzymes in soybean rhizosphere. Sci Agric Sin, 2012,45:3955-3964 (in Chinese with English abstract)
[32] 刘建国, 张伟, 李彦斌, 孙艳艳, 卞新民 . 新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响. 中国农业科学, 2009,42:725-733
doi: 10.3864/j.issn.0578-1752.2009.02.044
Liu J G, Zhang W, Li Y B, Sun Y Y, Bian X M . Effects of long-term continuous cropping system of cotton on soil physical-chemical properties and activities of soil enzyme in oasis in Xinjiang. Sci Agric Sin, 2009,42:725-733 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2009.02.044
[33] 何志刚, 王秀娟, 董环, 娄春荣, 牛世伟, 于涛 . 日光温室辣椒连作不同年限土壤微生物种群变化及酶活性研究. 中国土壤与肥料, 2013, ( 1):38-42
doi: 10.11838/sfsc.20130107
He Z G, Wang X J, Dong H, Lou C R, Niu S W, Yu T . Study on microbial and enzyme activity of capsicum soil different ages in sunlight greenhouse. China Soils Fert, 2013, ( 1):38-42 (in Chinese with English abstract)
doi: 10.11838/sfsc.20130107
[1] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[2] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[3] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[4] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析[J]. 作物学报, 2021, 47(4): 714-727.
[5] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[6] 白伟,孙占祥,张立祯,郑家明,冯良山,蔡倩,向午燕,冯晨,张哲. 耕层构造对土壤三相比和春玉米根系形态的影响[J]. 作物学报, 2020, 46(5): 759-771.
[7] 刘俊华, 吴正锋, 沈浦, 于天一, 郑永美, 孙学武, 李林, 陈殿绪, 王才斌, 万书波. 氮肥与密度互作对单粒精播花生根系形态、植株性状及产量的影响[J]. 作物学报, 2020, 46(10): 1605-1616.
[8] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[9] 吴玉红,郝兴顺,田霄鸿,陈浩,张春辉,崔月贞,秦宇航. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(02): 259-268.
[10] 王素芳,薛惠云,张志勇,汤菊香. 棉花根系生长与叶片衰老的协调性[J]. 作物学报, 2020, 46(01): 93-101.
[11] 冯珺珩,黄金凤,刘天奇,曹凑贵,李成芳. 耕作与秸秆还田方式对稻田N2O排放、水稻氮吸收及产量的影响[J]. 作物学报, 2019, 45(8): 1250-1259.
[12] 要凯,赵章平,康益晨,张卫娜,石铭福,杨昕宇,范艳玲,秦舒浩. 沟垄覆膜对连作马铃薯土壤酶活性、理化性状及产量的影响[J]. 作物学报, 2019, 45(8): 1286-1292.
[13] 李昊昱,孟兆良,庞党伟,陈金,侯永坤,崔海兴,金敏,王振林,李勇. 周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响[J]. 作物学报, 2019, 45(6): 893-903.
[14] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.
[15] 李成江,李大肥,周桂夙,许龙,徐天养,赵正雄. 不同种类生物炭对植烟土壤微生物及根茎病害发生的影响[J]. 作物学报, 2019, 45(2): 289-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!