欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (1): 37-45.doi: 10.3724/SP.J.1006.2019.84042

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于SNP遗传图谱定位甘蓝型油菜分枝角度QTL

汪文祥1(),储文1,梅德圣1,成洪涛1,朱琳琳2,付丽1,胡琼1,刘佳1,*()   

  1. 中国农业科学院油料作物研究所 / 农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
    南漳县植保站, 湖北襄阳 441500
  • 收稿日期:2018-03-22 接受日期:2018-08-20 出版日期:2018-09-09 网络出版日期:2018-09-09
  • 通讯作者: 刘佳
  • 基金资助:
    本研究由中国农业科学院科技创新工程(Group No. 118);国家农业现代产业技术体系建设专项(CARS-12);湖北省科技创新工程和国家自然科学基金项目资助(31471535);湖北省科技创新工程和国家自然科学基金项目资助(31771842)

Quantitative trait loci mapping for branch angle and candidate gene screening in Brassica napus L.

Wen-Xiang WANG1(),Wen CHU1,De-Sheng MEI1,Hong-Tao CHENG1,Lin-Lin ZHU2,Li FU1,Qiong HU1,Jia LIU1,*()   

  1. 1 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2 Plant Protection Station of Nanzhang, Xiangyang 441500, Hubei, China
  • Received:2018-03-22 Accepted:2018-08-20 Published:2018-09-09 Published online:2018-09-09
  • Contact: Jia LIU
  • Supported by:
    This study was supported by the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(Group No. 118);the China Agriculture Research System(CARS-12);the Hubei Agricultural Science and Technology Innovation Center, and the National Natural Science Foundation of China(31471535);the Hubei Agricultural Science and Technology Innovation Center, and the National Natural Science Foundation of China(31771842)

摘要:

分枝角度是油菜株型的重要性状, 与油菜的耐密植性密切相关。本研究利用油菜分枝角差异显著的育种亲本材料1098B (分枝角小)和R2 (分枝角大)杂交获得F1, 通过小孢子培养获得含163份株系的DH群体。以油菜60K SNP芯片进行DH群体基因分型, 构建高密度遗传图谱, 并利用QTL Cartographer 2.5对2个环境下油菜顶端分枝角和基部分枝角进行QTL分析。结果表明, 构建的高密度遗传图谱覆盖甘蓝型油菜19条染色体, 包含9521个多态性SNP标记, 1442个簇(bin), 覆盖基因组长度为2544.07 cM, 相邻簇(bin)之间平均距离为1.76 cM。在此图谱基础上采用复合区间作图法(CIM), 在2个环境下检测到17个分枝角度QTL, 分别位于A01、A02、A03、A06、A09、C02、C03、C04、C06和C08染色体上, 单个QTL解释的表型变异为6.39%~21.78%。用比较基因组方法与拟南芥分枝角度同源基因区间比对, 鉴定出其中6个QTL的12个候选基因。其中位于A03连锁群QTL在2年的试验中被重复检测到, 根据物理位置和基因组信息推测VAMP714为分枝角度的候选基因。这些QTL和候选基因将为油菜分枝角度的遗传改良提供有用的信息。

关键词: 甘蓝型油菜, 分枝角度, 60K SNP芯片, QTL位点, 候选基因

Abstract:

Branch angle is an important agronomic trait of plant architecture. In this study, 163 lines of a DH population derived from a cross between 1019B (compact type) and R2 (loose type) were genotyped by using 60K SNP array and a high-density genetic linkage map was constructed with 1442 bins inclusive of 9521 SNP markers to detect quantitative trait loic (QTL) for basal branch angle and top branch angle. The genetic map contained 19 lingkage groups with a total length of 2544.07 cM and an average distance between adjacent bin-markers of 1.76 cM. Totally, 17 QTL for branch angle were detected on chromosomes A01, A02, A03, A06, A09, C02, C03, C04, C06, and C08, respectively. The phenotypic variation accounted by a single locus was from 6.36% to 21.78%. Twelve candidate genes of branch angle were found underlying six QTL by comparing with homologous genes in Arabidopsis. Candidate gene VAMP714 was close to the peak position of A03 QTL confidence interval, which was identified on chromosome A03 in both environments. These QTL and candidate genes provide useful information for the genetic modification of rapeseed branch angle.

Key words: oilseed rape, branch angle, 60K SNP array, QTL mapping, candidate gene

表1

亲本及DH群体分枝角度性状两年的表型分析"

年份
Year
性状
Trait
亲本 Parent Pt-test DH群体 DH population
1019B (o) R2 (o) 范围
Range (o)
均值
Mean (o)
标准差
SD
变异系数
CV
偏度
Skewness
峰度
Kurtosis
2014 BBA 28.13±5.45 42.34±4.43 6.09E-03 26.17-50.22 36.46 5.23 14.35 -0.777 -0.085
TBA 36.32±5.46 46.65±4.08 1.47E-02 22.98-56.37 37.74 5.41 14.33 0.515 0.080
2015 BBA 27.90±3.50 37.72±2.25 1.44E-05 20.76-45.64 32.68 5.54 16.94 -0.201 0.150
TBA 38.75±6.30 47.66±6.10 2.46E-03 26.30-63.99 40.43 6.70 16.57 1.364 0.625

图1

油菜1019B×R2 DH群体分枝角度性状(BBA和TBA)两年的频率分布图"

表2

在2014年和2015年甘蓝型油菜DH群体分枝角度性状的相关系数"

2015BBA 2014TBA 2015TBA
2014BBA 0.411** 0.542** 0.353**
2015BBA 0.432** 0.586**
2014TBA 0.362**

图2

SNP标记簇在连锁群上分布图 纵坐标显示甘蓝型油菜基因组19个连锁群中的每一个SNP簇的遗传距离。"

表3

2个环境中检测到的顶端分枝角和基部分枝角QTL"

年份
Year
性状
Trait
数量性状位点
QTL
染色体
Chromosome
位置
Position
置信区间
Confidence interval
阈值
LOD
加性效应
Additive
贡献率
R2(%)
2014 BBA qBBA.A02.1 A02 4.0 0-24.0 3.7 2.15 15.10
qBBA.A03.1 A03 11.1 7.9-15.0 2.8 1.74 9.31
qBBA.C08.1 C08 8.4 0-11.4 2.8 -1.94 8.85
2015 BBA qBBA.A01.1 A01 34.0 32.5-35.4 2.8 1.70 8.07
qBBA.A03.2 A03 11.8 10.2-14.9 3.9 2.03 11.79
qBBA.C03.1 C03 101.7 99.7-103.6 3.9 -2.12 12.66
2014 TBA qTBA.A06.1 A06 90.4 87.2-91.4 2.9 -1.44 8.20
qTBA.A09.1 A09 87.0 82.0-90.2 6.9 -2.35 21.78
qTBA.C03.1 C03 146.0 144.2-148.5 4.3 -1.79 12.73
qTBA.C08.1 C08 8.4 0-11.4 3.0 -1.69 8.78
2015 TBA qTBA.A03.1 A03 17.6 14.9-18.8 0.2 1.85 8.28
qTBA.A09.2 A09 3.1 0.9-4.2 4.1 -2.14 11.08
qTBA.C02.1 C02 47.3 45.8-49.2 2.8 1.61 6.39
qTBA.C02.2 C02 54.8 53.4-57.5 3.2 1.83 8.07
qTBA.C02.3 C02 65.5 64.5-71.6 2.8 1.65 6.43
qTBA.C04.1 C04 1.6 0-5.7 3.9 -2.13 10.24
qTBA.C06.1 C06 80.3 79.7-92.2 4.1 5.20 11.00

图3

甘蓝型油菜顶端分枝角和基部分枝角QTL在连锁群上分布图"

表4

在甘蓝型油菜分枝角QTL置信区间比对获得的候选基因"

性状
Trait
名称
Name
物理区间
Physical interval
预测基因
Gene prediction
拟南芥相关基因 Related genes in A. thaliana 参考文献Reference
基因名 Gene name 登录号 Accession number
BBA qBBA.A01.1 2,992,973-3,391,055 BnaA01g06910D ARF16 AT4G30080 Shen et al.[22]
qBBA.A03.1 3,256,156-4,877,684 BnaA03g08500D VAMP714 AT5G22360 Sun et al.[19]
TBA qTBA.A09.2 963,282-1,890,151 BnaA09g02390D ABCB19/PGP19 AT3G28860 Sun et al.[19]
BnaA09g02480D EXPA5 AT3G29030 Sun et al.[19]
qTBA.C03.1 26,692 780-33,111,760 BnaC03g46000D GH3-10, DFL2 AT4G03400 Shen et al.[22]
BnaC03g46010D GH3-10, DFL2 AT4G03400 Shen et al.[22]
BnaC03g46450D SAUR8 AT2G16580 Shen et al.[22]
BnaC03g46960D SAUR42 AT2G28085 Shen et al.[22]
qTBA.C04.1 1563-990,575 BnaC04g00310D WRK23 AT2G47260 Li et al.[21]
BnaC04g00780D TAC1 AT2G46640 Li et al.[21]
qTBA.C06.1 27,360,890-32,410,130 BnaC06g29230D IAR1 AT1G68100 Li et al.[21]
BnaC06g31170D IAR4 AT1G24180 Li et al.[21]
[1] 王汉中, 殷艳 . 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014,36:414-421.
Wang H Z, Yin Y . Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014,36:414-421 (in Chinese with English abstract).
[2] Cai G Q, Yang Q Y, Chen H, Yang Q, Zhang C Y, Fan C C, Zhou Y M . Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep, 2016,6:21625.
doi: 10.1038/srep21625 pmid: 26880301
[3] Wang Y H, Li J Y . Molecular basis of plant architecture. Annu Rev Plant Biol, 2008,59:253-279.
doi: 10.1109/83.760334 pmid: 18444901
[4] Chalhoub B, Denoeud F, Liu S Y, Parkin I A, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P . Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953.
[5] Sun F M, Fan G Y, Hu Q, Zhou Y M, Guan M, Tong C B, Li J N, Du D Z, Qi C K, Jiang L C, Liu W Q, Huang S M, Chen W B, Yu J Y, Mei D S, Meng J L, Zeng P, Shi J Q, Liu K D, Wang X, Wang X F, Long Y, Liang X M, Hu Z Y, Huang G D, Dong C H, Zhang H, Li J, Zhang Y L, Li L W, Shi C C, Wang J H, Lee M S, Guan C Y, Xu X, Liu S Y, Liu X, Chalhoub B, Hua W, Wang H Z . The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J, 2017,92:452-468.
doi: 10.1111/tpj.13669 pmid: 28849613
[6] Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He Y J, Snowdon R J, Li J N . A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One, 2013,8:e83052.
doi: 10.1371/journal.pone.0083052 pmid: 3873396
[7] Wang N, Li F, Chen B Y, Xu K, Yan G X, Qiao J W, Li J, Gao G Z, Bancroft L, Meng J L, King G, Wu X M . Genome-wide investigation of genetic changes during modern breeding of Brassica napus. Theor Appl Genet, 2014,127:1817-1829.
doi: 10.1007/s00122-014-2343-6 pmid: 24947439
[8] 张凤启, 刘越英, 程晓辉, 童超波, 董彩华, 唐敏强, 黄军艳, 刘胜毅 . 利用高密度 SNP 标记定位甘蓝型油菜株高 QTL. 中国油料作物学报, 2014,36:695-700.
doi: 10.7505/j.issn.1007-9084.2014.06.001
Zhang Q F, Liu Y Y, Cheng X H, Tong C B, Dong C H, Tang M Q, Huang J Y, Liu S Y . QTL mapping of plant height using high density SNP markers in Brassica napus. Chin J Oil Crop Sci, 2014,36:695-700 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2014.06.001
[9] Xu L P, Hu K N, Zhang Z Q, Guan C Y, Shen S, Hua W, Li J N, Wen J, Yi B, Shen J X, Ma C Z, Tu J X, Fu T D . Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res, 2015,23:43-52.
doi: 10.1093/dnares/dsv035 pmid: 26659471
[10] Li F, Chen B Y, Xu K, Gao G Z, Yan G X, Qiao J W, Li J, Li H, Li L X, Xiao X, Zhang T Y, Nishio T, Wu X M . A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci, 2016,242:169-177.
doi: 10.1016/j.plantsci.2015.05.012 pmid: 26566834
[11] Liu J, Wang J, Wang H, Wang W X, Zhou R J, Mei D S, Chen H T, Yang J, Raman H, Hu Q . Multigenic control of pod shattering resistance in Chinese rapeseed germplasm revealed by genome-wide association and linkage analyses. Front Plant Sci, 2016,7:1058.
doi: 10.3389/fpls.2016.01058 pmid: 4954820
[12] Luo X, Ma C Z, Yue Y, Hu K N, Li Y Y, Duan Z Q, Wu M, Tu J X, Shen J X, Yi B, Fu T D . Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics, 2015,16:379.
doi: 10.1186/s12864-015-1607-0 pmid: 25962630
[13] Lu K, Peng L, Zhang C, Lu J H, Yang B, Xiao Z C, Liang Y, Xu X F, Qu C M, Zhang K, Liu L Z, Zhu Q L, Fu M L, Yuan X Y, Li J N . Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in Brassica napus. Front Plant Sci, 2017,8:206.
doi: 10.3389/fpls.2017.00206 pmid: 5309214
[14] Liu S, Fan C C, Li J N, Cai G Q, Yang Q Y, Wu J, Yi X Q, Zhang C Y, Zhou Y M . A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet, 2016,129:1203-1215.
doi: 10.1007/s00122-016-2697-z pmid: 26912143
[15] Sun C M, Wang B Q, Yan L, Hu K N, Liu S, Zhou Y M, Guan C Y, Zhang Z Q, Li J N, Chen S, Wen J, Ma C Z, Tu J X, Shen J X, Fu T D, Yi B . Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7:1102.
doi: 10.3389/fpls.2016.01102 pmid: 4961929
[16] Fu Y, Wei D Y, Dong H L, He Y J, Cui Y X, Mei J Q, Wan H F, Li J N, Snowdon R, Friedt W, Li R X, Qian W . Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep, 2015,5:14407.
doi: 10.1038/srep14407 pmid: 4585775
[17] 汪文祥, 胡琼, 梅德圣, 李云昌, 王会, 王军, 付丽, 刘佳 . 基于图像处理的油菜分枝及角果着生角度测量方法. 中国油料作物学报, 2015,37:566-570.
doi: 10.7505/j.issn.1007-9084.2015.04.020
Wang W X, Hu Q, Mei D S, Li Y C, Wang H, Wang J, Fu L, Liu J . Evaluation of branch and pod angle measurement based on digital images from Brassica napus L. Chin J Oil Crop Sci, 2015,37:566-570 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2015.04.020
[18] Liu J, Wang W, Mei D, Wang H, Fu L, Liu D, Li Y, Hu Q . Characterising variation of branch angle and genome-wide association mapping in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7:21.
doi: 10.3389/fpls.2016.00021 pmid: 26870051
[19] Sun C, Wang B, Wang X . Genome-wide association study dissecting the genetic architecture underlying the branch angle trait in rapeseed (Brassica napus L.). Sci Rep, 2016,6:33673.
doi: 10.1038/srep33673 pmid: 5028734
[20] Wang H, Cheng H T, Wang W X, Liu J, Hao M Y, Mei D S, Zhou R J, Fu L, Hu Q . Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Sci Rep, 2016,6:38493.
[21] Li H G, Zhang L P, Hu J H, Zhang F G, Chen B Y, Xu K, Gao G Z, Li H, Zhang T Y, Li Z Y, Wu X M . Genome-wide association mapping reveals the genetic control underlying branch angle in rapeseed (Brassica napus L.). Front Plant Sci, 2017,8:1054.
doi: 10.3389/fpls.2017.01054 pmid: 5474488
[22] Shen Y S, Yang Y, Xu E S, Ge X H, Xiang Y, Li Z Y . Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed (Brassica napus L.). Theor Appl Genet, 2018,131:67-78.
doi: 10.1007/s00122-017-2986-1 pmid: 28942459
[23] 张倩 . 甘蓝型油菜主要株型性状的遗传分析和QTL初步定位 . 西南大学硕士学位论文, 重庆, 2013.
Zhang Q . Genetic Effects Analysis and QTL Mapping of Major Plant-type Traits in Brassica napus L. MS Thesis of Southwest University, Chongqing,China, 2013 (in Chinese with English abstract).
[24] 汪文祥, 胡琼, 梅德圣, 李云昌, 周日金, 王会, 成洪涛, 付丽, 刘佳 . 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应. 作物学报, 2016,42:1103-1111.
doi: 10.3724/SP.J.1006.2016.01103
Wang W X, Hu Q, Mei D S, Li Y C, Zhou R J, Wang H, Cheng H T, Fu L, Liu J . Genetic effects of branch angle using mixture model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2016,42:1103-1111 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01103
[25] Wu Y H, Bhat P R, Close T J, Lonardi S . Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet, 2008,4:e1000212.
doi: 10.1371/journal.pgen.1000212
[26] Van Ooijen J W. JoinMap version 4.0: software for the calculation of genetic linkage maps in experimental populations. Netherlands: Wageningen University, 2006.
[27] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Raleigh, NC, USA: Department of Statistics, North Carolina State University, 2012. Windows QTL Cartographer 2.5. Raleigh, NC, USA: Department of Statistics, North Carolina State University, 2012. .
[28] Voorrips R E . MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002,93:77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[29] Parkin I A P, Gulden S M, Sharpe A G, Lukens L, Trick M, Osborn T C, Lydiate D J . Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics. 2005,171:765-781.
[30] Wang W X, Hu Q, Mei D S, Wang J, Cheng H T, Wang H, Fu L, Liu J . Identification of compact germplasm resources suitable for high density cultivation in Brassica napus L. Oil Crop Sci, 2018,3:33-41.
[31] Li H T, Younas M, Wang X F, Li X M, Chen L, Zhao B, Chen X, Xu J S, Hou F, Hong B H, Liu G, Zhao H Y, Wu X L, Du H Z, Wu J S, Liu K D . Development of a core set of single-locus SSR markers for allotetraploid rapeseed (Brassica napus L.). Theor Appl Genet, 2013,126:937-947.
[32] Shi J Q, Huang S M, Zhan J P, Yu J Y, Wang X F, Hua W, Liu S Y, Liu G H, Wang H Z . Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species. DNA Res, 2014,21:53-68.
doi: 10.1093/dnares/dst040 pmid: 3989493
[33] Mason A S, Higgins E E, Snowdon R J, Batley J, Stein A, Werner C, Parkin I A . A user guide to the Brassica 60K Illumina Infinium™ SNP genotyping array. Theor Appl Genet, 2017,130:621-633.
doi: 10.1007/s00122-016-2849-1 pmid: 28220206
[34] Dehiwala-Liyanage C K . Functional Analysis of AtVAMP714 Gene in Arabidopsis . PhD Dissertation of Durham University, Durham,UK, 2011.
[35] Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q . TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2007,52:891-898.
doi: 10.1111/j.1365-313X.2007.03284.x pmid: 17908158
[36] Ku L X, Wei X M, Zhang S F, Zhang J, Guo S L, Chen Y H . Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize(Zea mays L.). PLoS One, 2011,6:e20621.
doi: 10.1371/journal.pone.0020621 pmid: 3110200
[37] Dardick C, Callahan A, Horn R, Ruiz K, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R . PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J, 2013,75:618-630.
doi: 10.1111/tpj.12234 pmid: 23663106
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[6] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[7] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[8] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[9] 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因[J]. 作物学报, 2021, 47(8): 1460-1471.
[10] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[11] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[12] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[13] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[14] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[15] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!