作物学报 ›› 2019, Vol. 45 ›› Issue (1): 37-45.doi: 10.3724/SP.J.1006.2019.84042
汪文祥1(),储文1,梅德圣1,成洪涛1,朱琳琳2,付丽1,胡琼1,刘佳1,*()
Wen-Xiang WANG1(),Wen CHU1,De-Sheng MEI1,Hong-Tao CHENG1,Lin-Lin ZHU2,Li FU1,Qiong HU1,Jia LIU1,*()
摘要:
分枝角度是油菜株型的重要性状, 与油菜的耐密植性密切相关。本研究利用油菜分枝角差异显著的育种亲本材料1098B (分枝角小)和R2 (分枝角大)杂交获得F1, 通过小孢子培养获得含163份株系的DH群体。以油菜60K SNP芯片进行DH群体基因分型, 构建高密度遗传图谱, 并利用QTL Cartographer 2.5对2个环境下油菜顶端分枝角和基部分枝角进行QTL分析。结果表明, 构建的高密度遗传图谱覆盖甘蓝型油菜19条染色体, 包含9521个多态性SNP标记, 1442个簇(bin), 覆盖基因组长度为2544.07 cM, 相邻簇(bin)之间平均距离为1.76 cM。在此图谱基础上采用复合区间作图法(CIM), 在2个环境下检测到17个分枝角度QTL, 分别位于A01、A02、A03、A06、A09、C02、C03、C04、C06和C08染色体上, 单个QTL解释的表型变异为6.39%~21.78%。用比较基因组方法与拟南芥分枝角度同源基因区间比对, 鉴定出其中6个QTL的12个候选基因。其中位于A03连锁群QTL在2年的试验中被重复检测到, 根据物理位置和基因组信息推测VAMP714为分枝角度的候选基因。这些QTL和候选基因将为油菜分枝角度的遗传改良提供有用的信息。
[1] | 王汉中, 殷艳 . 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014,36:414-421. |
Wang H Z, Yin Y . Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014,36:414-421 (in Chinese with English abstract). | |
[2] |
Cai G Q, Yang Q Y, Chen H, Yang Q, Zhang C Y, Fan C C, Zhou Y M . Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep, 2016,6:21625.
doi: 10.1038/srep21625 pmid: 26880301 |
[3] |
Wang Y H, Li J Y . Molecular basis of plant architecture. Annu Rev Plant Biol, 2008,59:253-279.
doi: 10.1109/83.760334 pmid: 18444901 |
[4] | Chalhoub B, Denoeud F, Liu S Y, Parkin I A, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P . Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953. |
[5] |
Sun F M, Fan G Y, Hu Q, Zhou Y M, Guan M, Tong C B, Li J N, Du D Z, Qi C K, Jiang L C, Liu W Q, Huang S M, Chen W B, Yu J Y, Mei D S, Meng J L, Zeng P, Shi J Q, Liu K D, Wang X, Wang X F, Long Y, Liang X M, Hu Z Y, Huang G D, Dong C H, Zhang H, Li J, Zhang Y L, Li L W, Shi C C, Wang J H, Lee M S, Guan C Y, Xu X, Liu S Y, Liu X, Chalhoub B, Hua W, Wang H Z . The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J, 2017,92:452-468.
doi: 10.1111/tpj.13669 pmid: 28849613 |
[6] |
Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He Y J, Snowdon R J, Li J N . A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One, 2013,8:e83052.
doi: 10.1371/journal.pone.0083052 pmid: 3873396 |
[7] |
Wang N, Li F, Chen B Y, Xu K, Yan G X, Qiao J W, Li J, Gao G Z, Bancroft L, Meng J L, King G, Wu X M . Genome-wide investigation of genetic changes during modern breeding of Brassica napus. Theor Appl Genet, 2014,127:1817-1829.
doi: 10.1007/s00122-014-2343-6 pmid: 24947439 |
[8] |
张凤启, 刘越英, 程晓辉, 童超波, 董彩华, 唐敏强, 黄军艳, 刘胜毅 . 利用高密度 SNP 标记定位甘蓝型油菜株高 QTL. 中国油料作物学报, 2014,36:695-700.
doi: 10.7505/j.issn.1007-9084.2014.06.001 |
Zhang Q F, Liu Y Y, Cheng X H, Tong C B, Dong C H, Tang M Q, Huang J Y, Liu S Y . QTL mapping of plant height using high density SNP markers in Brassica napus. Chin J Oil Crop Sci, 2014,36:695-700 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2014.06.001 |
|
[9] |
Xu L P, Hu K N, Zhang Z Q, Guan C Y, Shen S, Hua W, Li J N, Wen J, Yi B, Shen J X, Ma C Z, Tu J X, Fu T D . Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res, 2015,23:43-52.
doi: 10.1093/dnares/dsv035 pmid: 26659471 |
[10] |
Li F, Chen B Y, Xu K, Gao G Z, Yan G X, Qiao J W, Li J, Li H, Li L X, Xiao X, Zhang T Y, Nishio T, Wu X M . A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci, 2016,242:169-177.
doi: 10.1016/j.plantsci.2015.05.012 pmid: 26566834 |
[11] |
Liu J, Wang J, Wang H, Wang W X, Zhou R J, Mei D S, Chen H T, Yang J, Raman H, Hu Q . Multigenic control of pod shattering resistance in Chinese rapeseed germplasm revealed by genome-wide association and linkage analyses. Front Plant Sci, 2016,7:1058.
doi: 10.3389/fpls.2016.01058 pmid: 4954820 |
[12] |
Luo X, Ma C Z, Yue Y, Hu K N, Li Y Y, Duan Z Q, Wu M, Tu J X, Shen J X, Yi B, Fu T D . Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics, 2015,16:379.
doi: 10.1186/s12864-015-1607-0 pmid: 25962630 |
[13] |
Lu K, Peng L, Zhang C, Lu J H, Yang B, Xiao Z C, Liang Y, Xu X F, Qu C M, Zhang K, Liu L Z, Zhu Q L, Fu M L, Yuan X Y, Li J N . Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in Brassica napus. Front Plant Sci, 2017,8:206.
doi: 10.3389/fpls.2017.00206 pmid: 5309214 |
[14] |
Liu S, Fan C C, Li J N, Cai G Q, Yang Q Y, Wu J, Yi X Q, Zhang C Y, Zhou Y M . A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet, 2016,129:1203-1215.
doi: 10.1007/s00122-016-2697-z pmid: 26912143 |
[15] |
Sun C M, Wang B Q, Yan L, Hu K N, Liu S, Zhou Y M, Guan C Y, Zhang Z Q, Li J N, Chen S, Wen J, Ma C Z, Tu J X, Shen J X, Fu T D, Yi B . Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7:1102.
doi: 10.3389/fpls.2016.01102 pmid: 4961929 |
[16] |
Fu Y, Wei D Y, Dong H L, He Y J, Cui Y X, Mei J Q, Wan H F, Li J N, Snowdon R, Friedt W, Li R X, Qian W . Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep, 2015,5:14407.
doi: 10.1038/srep14407 pmid: 4585775 |
[17] |
汪文祥, 胡琼, 梅德圣, 李云昌, 王会, 王军, 付丽, 刘佳 . 基于图像处理的油菜分枝及角果着生角度测量方法. 中国油料作物学报, 2015,37:566-570.
doi: 10.7505/j.issn.1007-9084.2015.04.020 |
Wang W X, Hu Q, Mei D S, Li Y C, Wang H, Wang J, Fu L, Liu J . Evaluation of branch and pod angle measurement based on digital images from Brassica napus L. Chin J Oil Crop Sci, 2015,37:566-570 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2015.04.020 |
|
[18] |
Liu J, Wang W, Mei D, Wang H, Fu L, Liu D, Li Y, Hu Q . Characterising variation of branch angle and genome-wide association mapping in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7:21.
doi: 10.3389/fpls.2016.00021 pmid: 26870051 |
[19] |
Sun C, Wang B, Wang X . Genome-wide association study dissecting the genetic architecture underlying the branch angle trait in rapeseed (Brassica napus L.). Sci Rep, 2016,6:33673.
doi: 10.1038/srep33673 pmid: 5028734 |
[20] | Wang H, Cheng H T, Wang W X, Liu J, Hao M Y, Mei D S, Zhou R J, Fu L, Hu Q . Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Sci Rep, 2016,6:38493. |
[21] |
Li H G, Zhang L P, Hu J H, Zhang F G, Chen B Y, Xu K, Gao G Z, Li H, Zhang T Y, Li Z Y, Wu X M . Genome-wide association mapping reveals the genetic control underlying branch angle in rapeseed (Brassica napus L.). Front Plant Sci, 2017,8:1054.
doi: 10.3389/fpls.2017.01054 pmid: 5474488 |
[22] |
Shen Y S, Yang Y, Xu E S, Ge X H, Xiang Y, Li Z Y . Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed (Brassica napus L.). Theor Appl Genet, 2018,131:67-78.
doi: 10.1007/s00122-017-2986-1 pmid: 28942459 |
[23] | 张倩 . 甘蓝型油菜主要株型性状的遗传分析和QTL初步定位 . 西南大学硕士学位论文, 重庆, 2013. |
Zhang Q . Genetic Effects Analysis and QTL Mapping of Major Plant-type Traits in Brassica napus L. MS Thesis of Southwest University, Chongqing,China, 2013 (in Chinese with English abstract). | |
[24] |
汪文祥, 胡琼, 梅德圣, 李云昌, 周日金, 王会, 成洪涛, 付丽, 刘佳 . 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应. 作物学报, 2016,42:1103-1111.
doi: 10.3724/SP.J.1006.2016.01103 |
Wang W X, Hu Q, Mei D S, Li Y C, Zhou R J, Wang H, Cheng H T, Fu L, Liu J . Genetic effects of branch angle using mixture model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2016,42:1103-1111 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01103 |
|
[25] |
Wu Y H, Bhat P R, Close T J, Lonardi S . Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet, 2008,4:e1000212.
doi: 10.1371/journal.pgen.1000212 |
[26] | Van Ooijen J W. JoinMap version 4.0: software for the calculation of genetic linkage maps in experimental populations. Netherlands: Wageningen University, 2006. |
[27] | Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Raleigh, NC, USA: Department of Statistics, North Carolina State University, 2012. Windows QTL Cartographer 2.5. Raleigh, NC, USA: Department of Statistics, North Carolina State University, 2012. . |
[28] |
Voorrips R E . MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002,93:77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185 |
[29] | Parkin I A P, Gulden S M, Sharpe A G, Lukens L, Trick M, Osborn T C, Lydiate D J . Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics. 2005,171:765-781. |
[30] | Wang W X, Hu Q, Mei D S, Wang J, Cheng H T, Wang H, Fu L, Liu J . Identification of compact germplasm resources suitable for high density cultivation in Brassica napus L. Oil Crop Sci, 2018,3:33-41. |
[31] | Li H T, Younas M, Wang X F, Li X M, Chen L, Zhao B, Chen X, Xu J S, Hou F, Hong B H, Liu G, Zhao H Y, Wu X L, Du H Z, Wu J S, Liu K D . Development of a core set of single-locus SSR markers for allotetraploid rapeseed (Brassica napus L.). Theor Appl Genet, 2013,126:937-947. |
[32] |
Shi J Q, Huang S M, Zhan J P, Yu J Y, Wang X F, Hua W, Liu S Y, Liu G H, Wang H Z . Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species. DNA Res, 2014,21:53-68.
doi: 10.1093/dnares/dst040 pmid: 3989493 |
[33] |
Mason A S, Higgins E E, Snowdon R J, Batley J, Stein A, Werner C, Parkin I A . A user guide to the Brassica 60K Illumina Infinium™ SNP genotyping array. Theor Appl Genet, 2017,130:621-633.
doi: 10.1007/s00122-016-2849-1 pmid: 28220206 |
[34] | Dehiwala-Liyanage C K . Functional Analysis of AtVAMP714 Gene in Arabidopsis . PhD Dissertation of Durham University, Durham,UK, 2011. |
[35] |
Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q . TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2007,52:891-898.
doi: 10.1111/j.1365-313X.2007.03284.x pmid: 17908158 |
[36] |
Ku L X, Wei X M, Zhang S F, Zhang J, Guo S L, Chen Y H . Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize(Zea mays L.). PLoS One, 2011,6:e20621.
doi: 10.1371/journal.pone.0020621 pmid: 3110200 |
[37] |
Dardick C, Callahan A, Horn R, Ruiz K, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R . PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J, 2013,75:618-630.
doi: 10.1111/tpj.12234 pmid: 23663106 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[3] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[6] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[7] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[8] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[9] | 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因[J]. 作物学报, 2021, 47(8): 1460-1471. |
[10] | 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123. |
[11] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[12] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[13] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[14] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[15] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
|