欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (1): 144-152.doi: 10.3724/SP.J.1006.2019.81014

• 研究简报 • 上一篇    下一篇

小麦旗叶衰老过程不同数学模型拟合比较及衰老特征分析

吕国锋1,2(),范金平2,张伯桥2,高德荣2,王慧2,刘业宇2,吴素兰2,程凯2,王秀娥1,*()   

  1. 1 南京农业大学, 江苏南京210095
    2 江苏里下河地区农业科学研究所 / 国家小麦改良中心扬州分中心, 江苏扬州225007
  • 收稿日期:2018-02-03 接受日期:2018-10-08 出版日期:2018-11-07 网络出版日期:2018-11-07
  • 通讯作者: 王秀娥
  • 基金资助:
    本研究由江苏省重点研发计划项目(BE2017340);国家重点研发计划项目资助(2017YFD0100800)

Comparison of different mathematical models describing flag leaf senescence process of wheat and characteristics of leaf senescence process

Guo-Feng LYU1,2(),Jin-Ping FAN2,Bo-Qiao ZHANG2,De-Rong GAO2,Hui WANG2,Ye-Yu LIU2,Su-Lan WU2,Kai CHENG2,Xiu-E WANG1,*()   

  1. 1 Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    2 Institute of Agricultural Sciences for Lixiahe Region of Jiangsu Province / Yangzhou Sub-center of National Wheat Improvement Center, Yangzhou 225007, Jiangsu, China
  • Received:2018-02-03 Accepted:2018-10-08 Published:2018-11-07 Published online:2018-11-07
  • Contact: Xiu-E WANG
  • Supported by:
    This study was supported by the Key Research and Development Programs of Jiangsu Province(BE2017340);the National Key Research and Development Programs of China(2017YFD0100800)

摘要:

为了准确了解小麦叶片的衰老特征, 筛选适合描述小麦叶片衰老过程的数学模型, 2011年和2012年分别以91个和105个小麦品种(系)为材料, 用“S”型曲线中的Logistic、Gompertz和Richards模型拟合了试验品种叶片的衰老过程, 解析了其叶片衰老特征。结果表明, 试验品种可分为延绿、中等延绿、中等早衰和早衰4种类型。其旗叶衰老过程可分为衰老起始期、快速衰老期和衰老结束期3个阶段, 3个阶段旗叶的衰老速度表现为“慢-快-慢”, 不同延绿类型品种开花后旗叶的绿色叶面积百分比下降主要在衰老过程的中后期。3种模型对不同延绿类型品种旗叶衰老过程均可以拟合, Gompertz和Richards模型拟合度接近, 高于Logistic模型。Gompertz模型的拟合度以早衰>中等早衰>中等延绿>延绿类型。不同延绿类型品种旗叶衰老曲线特征参数达到最大衰老速度时间(TMRS)、平均衰老速度(ARS)和绿色叶面积持续期(GLAD)存在显著差异, TMRS和GLAD以延绿>中等延绿>中等早衰>早衰, ARS以早衰>中等早衰>中等延绿>延绿。Gompertz模型对小麦叶片衰老过程的拟合度优于Logistic模型。叶片衰老过程特征参数可以用于品种延绿性差异评价。

关键词: 小麦, 叶片衰老模型, 非线性拟合, 延绿

Abstract:

To clarity leaf senescence patterns and characteristics of wheat, we used 91 and 105 varieties or advanced lines in 2011 and 2012 respectively, to fit the leaf senescence process by Logistic, Gompertz, and Richards models. The varieties tested were classified into stay green (SG), moderately stay green (MSG), moderately non-stay green (MNSG) and non-stay green (NSG) types. Development of the flag leaf senescence was divided into initial senescence stage, rapid senescence stage and terminal senescence stage in all variety types. The senescence rates of the three stages showed a slow-fast-slow changing pattern. The decrease of green leaf area (% GLA) after anthesis occurred mainly in the middle and late senescence stages. Logistic, Gompertz and Richards models were able to simulate the leaf senescence process of all variety types and the fitness of Richards and Gompertz models was better than that of Logistic model. The fitting goodness of Gompertz model ranked as NSG type > MNSG type > MSG type > SG type. There was a significant difference in time of maximum rate of senescence, green leaf area duration and average rate of senescence derived from Gompertz equation in all varieties. The average rate of senescence showed a trend of NSG type > MNSG type > MSG type > SG type, while the remaining two parameters showed a trend of SG type > MSG type > MNSG type > NSG type. Our results indicate that Gompertz model is more suitable than Logistic model to describe the leaf senescence process of wheat and the characteristic parameters for leaf senescence process can be used to evaluate stay green difference between wheat varieties.

Key words: wheat, leaf senescence model, curve fitting, stay green

表1

Gompertz、Logistic和Richards模型拟合方程的特征参数"

模型
Model
数学式
Equation
最大衰老速度时间
TMRS
最大衰老速度时的%
GLA ymax
最大衰老速度
MRS
绿色叶面积持续期
GLAD
平均衰老速度
ARS
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ $c$ $\frac{a}{\text{e}}$ $\frac{ab}{e}$ $c-\frac{\ln (-\ln 0.01)}{b}$ $\frac{-99a}{\text{GLAD}}$
Logistic $y=\frac{a}{1+{{\text{e}}^{-b(x-c)}}}$ $c$ $\frac{a}{2}$ $\frac{ab}{4}$ $c-\frac{\ln 99}{b}$ $\frac{-99a}{\text{GLAD}}$
Richards $y=\frac{a}{{{[1+{{\text{e}}^{-}}^{b(x-c)}]}^{\frac{1}{d}}}}$ $c-\frac{\lg d}{b}$ $\frac{a}{{{(d+1)}^{\frac{1}{d}}}}$ $\frac{ab}{{{(d+1)}^{(\frac{1}{d}+1)}}}$ $c-\frac{\ln ({{100}^{d}}-1)}{b}$ $\frac{-99a}{\text{GLAD}}$

表2

不同延绿类型品种旗叶的%GLA衰减的过程"

类型
Type
品种数
Variety number
DAA10 DAA15 DAA20 DAA25 DAA30
2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012
延绿 SG 10 22 99.2 a 96.6 a 98.7 a 91.7 a 95.6 a 82.3 a 89.0 a 56.5 a 53.0 a 11.4 a
中等延绿 MSG 21 32 98.0 ab 96.3 a 95.7 b 90.0 a 91.5 ab 75.1 b 74.5 b 37.8 b 9.8 b 3.7 b
中等早衰 MNSG 28 40 97.5 b 94.6 b 95.0 b 85.8 b 89.7 b 64.4 c 45.9 c 13.2 c 0.8 c 0.7 c
早衰 NSG 32 11 98.3 ab 92.7 c 95.2 b 81.5 c 85.6 c 26.9 d 11.6 d 0.5 d 0 c 0 c

表3

Logistic、Gompertz和Richards模型对不同延绿类型品种拟合结果"

类型
Type
品种数
No. of varieties
模型
Model
方程
Equation
方程系数Coefficients 模型适合性
Fitness of model
a b c d R2 RMSE
2011
延绿
Stay green
10 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 98.40 -3.67 1.35 0.9536 4.149
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 98.53 -3.15 1.48 0.9577 3.961
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 99.20 -1.97 6.30 1.57×10-4 0.9426 4.662
中等延绿
Moderately stay green
21 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 95.59 -4.93 0.93 0.9646 6.436
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 96.71 -2.95 1.09 0.9710 5.798
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 97.05 -2.62 7.40 6.85×10-8 0.9713 5.858
中等早衰
Moderately non-stay green
28 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 95.43 -5.39 0.72 0.9846 4.760
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 96.91 -3.12 0.86 0.9893 3.976
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 97.10 -3.07 5.76 2.98×10-7 0.9887 4.098
早衰
Non-stay green
32 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 97.39 -7.58 0.33 0.9948 3.167
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 97.47 -5.07 0.50 0.9949 3.124
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 97.36 -3.86 3.54 8.40×10-6 0.9880 4.832
2012
延绿
Stay green
22 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 94.31 -2.84 0.78 0.9516 7.150
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 96.29 -1.95 0.98 0.9609 6.424
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 96.29 -2.04 6.01 3.62×10-5 0.9596 6.564
中等延绿
Moderately stay green
32 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 94.81 -2.79 0.52 0.9735 5.808
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 98.08 -1.78 0.73 0.9797 5.075
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 98.07 -1.78 3.52 7.01×10-3 0.9795 5.118
类型
Type
品种数
No. of varieties
模型
Model
方程
Equation
方程系数Coefficients 模型适合性
Fitness of model
a b c d R2 RMSE
中等早衰
Moderately non-stay green
40 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 93.31 -3.42 0.20 0.9809 5.367
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 96.30 -2.12 0.39 0.9840 4.917
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 95.96 -2.16 4.57 1.17×10-4 0.9836 4.992
早衰
Non-stay green
11 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 93.46 -4.30 -0.23 0.9916 3.783
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 94.44 -3.17 -0.08 0.9917 3.768
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 94.03 -3.65 0.02 0.50 0.9898 4.216

表4

Gompertz模型对试验品种旗叶衰老过程的拟合度"

年份
Year
品种数
Number of varieties
R2均值
Mean of R2
R2变幅
Range of R2
RMSE均值
Mean of RMSE
RMSE变幅
Range of RMSE
2011 91 0.997 0.948-1.000 2.062 0.007-10.640
2012 105 0.996 0.964-1.000 2.546 0-8.750

表5

不同延绿类型品种旗叶3个衰老阶段的参数"

类型
Type
衰老起始期Initial senescence stage 快速衰老期Rapid senescence stage 衰老结束期Terminal senescence stage
T1 (d) P1 (%) V1 (% d-1) T2 (d) P2 (%) V2 (% d-1) T3 (d) P3 (%) V3 (% d-1)
2011
延绿 SG 28.9 a -31.4 a -1.1 a 5.9 a -60.3 a -11.4 a 1.7 a -6.2 a -4.0 a
中等延绿 MSG 25.8 b -30.8 a -1.2 b 4.5 ab -59.1 a -15.1 a 1.3 ab -6.1 a -5.3 a
中等早衰 MNSG 23.6 c -30.8 a -1.3 c 4.2 b -59.1 a -14.8 a 1.2 b -6.1 a -5.2 a
早衰 NSG 21.9 d -31.0 a -1.4 d 3.4 b -59.6 a -19.5 b 1.0 b -6.2 a -6.9 b
2012
延绿 SG 23.7 a -30.6 a -1.3 a 7.1 ab -58.8 a -9.0 a 2.1 ab -6.0 a -3.1 a
中等延绿 MSG 21.3 b -31.3 a -1.5 b 7.7 a -60.1 a -8.6 a 2.2 a -6.2 a -3.0 a
中等早衰 MNSG 19.7 c -30.5 a -1.6 b 6.3 bc -58.6 a -10.2 a 1.8 bc -6.0 a -3.6 a
早衰 NSG 17.3 d -30.0 a -1.7 c 4.4 c -57.5 a -13.6 b 1.3 c -5.9 a -4.7 b

图1

Gompertz方程对4种延绿类型品种旗叶衰老过程的拟合曲线 g1~g4分别代表延绿、中等延绿、中等早衰和早衰类型Gompertz拟合的曲线; gla_g1 vs t1、gla_g2 vs t2、gla_g3 vs t3和gla_g4 vs t4分别代表这4种延绿类型品种不同日龄下的%GLA。"

表6

不同延绿类型品种的旗叶衰老过程参数"

类型
Type
TMRS MRS GLAD ARS
2011 2012 2011 2012 2011 2012 2011 2012
延绿SG 32.14 a 26.71 a -16.64 a -13.09 a 37.60 a 32.08 a -2.67 a -3.00 a
中等延绿MSG 27.92 b 24.55 b -24.20 b -11.74 a 31.04 b 31.10 a -3.14 b -3.15 a
中等衰老MNSG 25.27 c 22.63 c -22.53 b -13.90 a 28.57 c 27.65 b -3.38 c -3.42 b
早衰NSG 23.34 d 19.94 d -29.44 c -15.29 b 25.90 d 24.67 c -3.78 d -3.85 c
[1] Spano G, Di Fonzo N, Perrotfa C, Ronga G, Lawlor D W, Napier J A, Shewry P R . Physiological characterization of stay green mutants in durum wheat. J Exp Bot, 2003,54:1415-1420.
doi: 10.1093/jxb/erg150 pmid: 12709488
[2] 李永攀, 罗培高, 任正隆 . 小麦持绿性与产量关系研究. 西南农业学报, 2008,21:1221-1225.
doi: 10.3969/j.issn.1001-4829.2008.05.005
Li Y P, Luo P G, Ren Z L . Study on the relation between the yield and trait of green-keeping wheat. Southwest China J Agric Sci, 2008,21:1221-1225 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-4829.2008.05.005
[3] Christopher J T, Manschadi A M, Hammer G L, Borrell A K . Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Aust J Agric Res, 2008,59:354-364.
doi: 10.1071/AR07193
[4] 武永胜, 薛晖, 刘洋, 龚月桦 . 持绿型小麦叶片衰老和叶绿素荧光特征的研究. 干旱地区农业研究, 2010,28(4):117-122.
Wu Y S, Xue C, Liu H, Gong Y H . Study on senescence and chlorophyll fluorescence traits of stay-green leaf in wheat. Agric Res Arid Areas, 2010,28(4):117-122 (in Chinese with English abstract).
[5] Gaju O, Allard V, Martre P, Snape J W, Heumez E, Le Gouis J, Moreau D, Bogard M, Griffiths S, Orford S, Hubbart S, Foulkes M J . Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Res, 2011,23:139-152.
doi: 10.1016/j.fcr.2011.05.010
[6] Derkx A P, Orford S, Griffiths S, Foulkes M J, Hawkesford M J . Identification of differentially senescing mutants of wheat and impacts on yield, biomass and nitrogen partitioning. J Integr Plant Biol, 2012,54:555-566.
doi: 10.1111/j.1744-7909.2012.01144.x pmid: 22788746
[7] Verma V, Foulkes M J, Worland A J, Sylvester-Bradley R, Caligari P D S, Snape J W . Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica, 2004,135:255-263.
doi: 10.1023/B:EUPH.0000013255.31618.14
[8] Luche H S L, Silva J A G, Nornberg R, Zimmer C M, Arenhardt E G, Caetano V R, Maia L C, Oliveira A C . Stay-green effects on adaptability and stability in wheat. Afr J Agric Res, 2015,10:1142-1145.
[9] 石慧清, 龚月桦, 张东武 . 花后高温对持绿型小麦叶片衰老及籽粒淀粉合成相关酶的影响. 植物生态学报, 2011,35:769-778.
doi: 10.3724/SP.J.1258.2011.00769
Shi H Q, Gong Y H, Zhang D W . Effect of high temperature on leaf senescence and related enzymes of grain starch synthesis in stay-green wheat after anthesis. Chin J Plant Ecol, 2011,35:769-778 (in Chinese with English abstract).
doi: 10.3724/SP.J.1258.2011.00769
[10] Kumari M, Pudake R N, Singh V P, Joshi A K . Association of stay green trait with canopy temperature depression and yield traits under terminal heat stress in wheat (Triticum aestivumL.). Euphytica, 2012,190:87-97.
doi: 10.1007/s10681-012-0780-3
[11] 赵致, 李家修, 张成琦 . 贵州高原夏秋麦籽粒灌浆特性的研究. 作物学报, 1998,24:110-116.
Zhao Z, Li J X, Zhang C Q . Studies on some characteristics of grain filling of wheat with late summer and early-autumn sowing in Guizhou plateau. Acta Agron Sin, 1998,24:110-116 (in Chinese with English abstract).
[12] 冯素伟, 胡铁柱, 李淦, 董娜, 李笑慧, 茹振钢, 程自华 . 不同小麦品种籽粒灌浆特性分析. 麦类作物学报, 2009,29:643-646.
doi: 10.7606/j.issn.1009-1041.2009.04.019
Feng S W, Hu T Z, Li G, Dong N, Li X H, Ru Z G, Cheng Z H . Analysis on grain filling characteristics of different wheat varieties. J Triticeae Crops, 2009,29:643-646 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2009.04.019
[13] 陈朝儒, 奚亚军, 王竹林, 王永朋, 刘曙东, 王秀波 . 冬小麦持绿和灌浆特征及其抗早衰特性评价. 西北植物学报, 2011,31:715-723.
Chen C R, Xi Y J, Wang Z L, Wang Y P, Liu S D, Wang X P . Characteristics of stay-green and grain-filling and the evaluation of anti-senescence properties of winter wheat. Acta Bot Boreali-Occident Sin, 2011,31:715-723 (in Chinese with English abstract).
[14] 张耀兰, 曹承富, 杜世州, 赵竹, 乔玉强, 刘永华, 张四华 . 淮北地区高产小麦籽粒灌浆特性分析. 华北农学报, 2010,25(增刊):84-87.
doi: 10.7668/hbnxb.2010.S2.019
Zhang Y L, Cao C F, Du S Z, Zhao Z, Qiao Y Q, Liu Y H, Zhang S H . Analysis on grain filling characteristics of high-yielding wheat in Huaibei area. Acta Agric Boreali-Sin, 2010,25(suppl):84-87 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2010.S2.019
[15] 吴晓丽, 汤永禄, 李朝苏, 吴春, 黄钢, 马蓉 . 四川盆地小麦籽粒的灌浆特性. 作物学报, 2014,40:337-345.
doi: 10.3724/SP.J.1006.2014.00337
Wu X L, Tang Y L, Li C S, Wu C, Huang G, Ma R . Characteristics of grain filling in wheat growing in Sichuan basin. Acta Agron Sin, 2014,40:337-345 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00337
[16] 周竹青, 朱旭彤, 王维金 . 用Richards方程模拟三个典型小麦品种的灌浆过程. 湖北农业科学, 2001, ( 6):26-28.
Zhou Z Q, Zhu X T, Wang W J . Modeling the filling process of three typical wheat cultivars with Richards equation. Hubei Agric Sci, 2001, ( 6):26-28 (in Chinese with English abstract).
[17] 任红松, 朱家辉, 艾比布拉, 宋羽, 崔新菊, 曹连莆 . 小麦籽粒灌浆特性分析. 西北农林科技大学学报(自然科学版), 2006,34(3):55-60.
doi: 10.3321/j.issn:1671-9387.2006.03.012
Ren H S, Zhu J H, Aibibula, Song Y, Cui X J, Cao L P . Analysis on grain filling characteristics of wheat variety. J Northwest A&F Univ (Nat Sci Edn), 2006,34(3):55-60 (in Chinese with English abstract).
doi: 10.3321/j.issn:1671-9387.2006.03.012
[18] 薛香, 吴玉娥, 陈荣江, 韩占江, 郜庆炉 . 小麦籽粒灌浆过程的不同数学模型模拟比较. 麦类作物学报, 2006,26:169-171.
doi: 10.7606/j.issn.1009-1041.2006.06.284
Xue X, Wu Y E, Chen R J, Han Z J, Gao Q L . Comparison of different mathematical equations for simulating the grain filling process of wheat. J Triticeae Crops, 2006,26:169-171 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2006.06.284
[19] Van Oosterom E J, Jayachandran R, Bidinger F R . Diallel analysis of the stay-green trait and its components in sorghum. Crop Sci, 1996,36:549-555.
doi: 10.2135/cropsci1996.0011183X003600030002x
[20] Mahalakshmi V, Bidinger F R . Evaluation of stay green sorghum germplasm lines at ICRISAT. Crop Sci, 2002,42:965-974.
doi: 10.2135/cropsci2002.9650
[21] Kassahun B, Bidinger F R, Hash C T, Kuruvinashetti M S . Stay-green expression in early generation sorghum [Sorghum bicolor(L.) Moench] QTL introgression lines. Euphytica, 2010,172:351-362.
[22] 刘开昌, 董树亭, 赵海军, 王庆成, 李宗新, 刘霞, 张慧 . 我国玉米自交系叶片保绿性及其与产量的关系. 作物学报, 2009,35:1662-1671.
doi: 10.3724/SP.J.1006.2009.01662
Liu K C, Dong S T, Zhao H J, Wang Q C, Li Z X, Liu X, Zhang H . Leaf stay-green traits in Chinese maize inbred lines and their relationship with grain yield. Acta Agron Sin, 2009,35:1662-1671 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.01662
[23] 赵延明, 张海燕 . 基于叶片面积玉米叶片保绿度开花后衰减特性初步研究. 中国农学通报, 2009,25(12):91-94.
Zhao Y M, Zhang H Y . The primary studies on reducing characteristics of leaf stay-green based on leaf area after flowering in maize. Chin Agric Sci Bull, 2009,25(12):91-94 (in Chinese with English abstract).
[24] 薛晖, 贾丽, 龚月桦, 刘赢洲, 吴养会 . 冬小麦叶片持绿能力及其衰老特征研究. 西北植物学报, 2010,30:336-343.
Xue H, Jia L, Gong Y H, Liu Y Z, Wu Y H . Study on the stay-green capacity and leaf senescence of winter wheat. Acta Bot Boreali-Occident Sin, 2010,30:336-343 (in Chinese with English abstract).
[25] Vijayalakshmi K, Fritz A K, Paulsen G M, Bai G, Pandravada S, Gill B S . Modeling and mapping QTL for senescence- related traits in winter wheat under high temperature. Mol Breed, 2010,26:163-175.
doi: 10.1007/s11032-009-9366-8
[26] 梁增浩 . 不同水分条件下小麦持绿相关性状的QTL定位. 山西农业大学硕士学位论文, 山西太谷, 2013.
Liang Z H . Mapping QTLs for Traits Associated with Stay Green in Wheat (Triticum aestivum L.) under Two Water Regimes. MS Thesis of Shanxi Agriculture University, Taigu, Shanxi, China, 2013 (in Chinese with English abstract).
[27] Pask A J D, Pietragalla J, Mullan D M, Reynolds M P . Physiological Breeding: II. A Field Guide to Wheat Phenotyping. Chapter 12: Leaf area, green crop area and senescence. Mexico: CIMMYT, 2012. pp 58-62.
[28] Seber G A F, Wild C J . Nonlinear Regression. Chapter 7: Growth model. New York: Wiley, 1989. pp 325-365.
[29] 邢黎峰, 孙明高, 王元军 . 生物生长的Richards模型. 生物数学学报, 1998,13:348-353.
doi: 10.3969/j.issn.1001-9626.1998.03.013
Xing L F, Sun M G, Wang Y J . Richards growth model of living-organism. J Biomath, 1998,13:348-353 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-9626.1998.03.013
[30] 朱庆森, 曹显祖, 骆亦其 . 水稻籽粒灌浆的生长分析. 作物学报, 1988,14:182-192.
Zhu Q S, Cao X Z, Luo Y Q . Growth analysis on the process of grain filling in rice. Acta Agron Sin, 1988,14:182-192 (in Chinese with English abstract).
[31] 段俊杰, 薛丽华, 王志敏, 纪伟, 刘云鹏, 鲁来清 . Matlab在玉米籽粒灌浆特性分析中的应用. 玉米科学, 2010,18(6):143-147.
Duan J J, Xue L H, Wang Z M, Ji W, Liu Y P, Lu L Q . Application of Matlab in analysis of kernel filling characteristics in maize. J Maize Sci, 2010,18(6):143-147 (in Chinese with English abstract).
[32] 陈四龙, 李玉荣, 徐桂真, 程增书 . 不同高油花生品种(系)油分积累特性的模拟研究. 作物学报, 2008,34:142-149.
doi: 10.3724/SP.J.1006.2008.00142
Chen S L, Li Y R, Xu G Z, Cheng Z S . Simulation on oil accumulation characteristics in different high-oil peanut varieties. Acta Agron Sin, 2008,34:142-149 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.00142
[33] 朱正元, 陈伟侯, 陈丰 . Logistic曲线与Gompertz曲线的比较研究. 数学的实践与认识, 2003,33(10):66-71.
doi: 10.3969/j.issn.1000-0984.2003.10.013
Zhu Z Y, Chen W H, Chen F . Comparisons on logistic curve and Gompertz curve. Mathemat Pract Theor, 2003,33(10):66-71 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-0984.2003.10.013
[34] 莫惠栋 . Logistic方程及应用. 江苏农学院学报, 1983,4(2):53-57.
Mo H D . Logistic equation and its application. J Jiangsu Agric Coll, 1983,4(2):53-57 (in Chinese).
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!