欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (3): 390-400.doi: 10.3724/SP.J.1006.2019.84056

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生膜联蛋白基因家族成员的结构和表达分析

王慧敏1,李新国2,万书波3,张智猛4,丁红4,李国卫2,高文伟1,*(),彭振英1,2,*()   

  1. 1 新疆农业大学, 新疆乌鲁木齐830052
    2 山东省农业科学院生物技术研究中心 / 山东省作物遗传改良与生态生理重点实验室, 山东济南250100
    3 山东省农业科学院, 山东济南250100
    4 山东省花生研究所, 山东青岛266100
  • 收稿日期:2018-04-19 接受日期:2018-10-08 出版日期:2019-03-12 网络出版日期:2018-11-05
  • 通讯作者: 高文伟,彭振英
  • 作者简介:E-mail: whuiminyspa@163.com
  • 基金资助:
    本研究由山东省自然科学基金重大基础研究项目(植物根系耐盐、抗旱、耐瘠薄的调控机理);山东省农业科学院农业科技创新工程项目(CXGC2018B05);山东省自然科学基金项目资助(ZR2014YL043)

Structure and expression analysis of the members of peanut annexin gene family

Hui-Min WANG1,Xin-Guo LI2,Shu-Bo WAN3,Zhi-Meng ZHANG4,Hong DING4,Guo-Wei LI2,Wen-Wei GAO1,*(),Zhen-Ying PENG1,2,*()   

  1. 1 Xinjiang Agricultural University, Wulumuqi 830052, Xinjang, China
    2 Research Center of Biotechnology, Shandong Academy of Agricultural Sciences / Shandong Key Laboratory of Crop Genetic Improvement and Ecology and Physiology, Jinan 250100, Shandong, China
    3 Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    4 Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
  • Received:2018-04-19 Accepted:2018-10-08 Published:2019-03-12 Published online:2018-11-05
  • Contact: Wen-Wei GAO,Zhen-Ying PENG
  • Supported by:
    This study was supported by the Major Basic Research Project of Shandong Natural Science Foundation;Shandong Academy of Agricultural Sciences Agricultural Science and Technology Innovation Project(CXGC2018B05);Shandong Natural Science Foundation(ZR2014YL043)

摘要:

植物膜联蛋白(annexin)是一类钙依赖性磷脂结合蛋白, 参与调控植物代谢和生长发育并协同调节抗旱、耐盐等多种抗逆反应, 其结构在不同植物中具有物种特异性。为系统分析花生膜蛋白基因家族, 对30个花生annexin (annexin of Arachis hypogaea, AnnAh)基因进行了生物信息学分析。结果表明 30个AnnAhs不均匀分布在13条染色体上, 其中A、B基因组中各有13个和17个。AnnAhs含有2~8个内含子, 但大多数含有5~6个内含子。聚类分析表明, 植物annexin聚类关系比较复杂, 低等植物、单子叶、双子叶植物annexin间隔分布, AnnAhs穿插其中, 分布于各个分支中; 但在各个小分支中, AnnAhs 基本上都与双子叶植物annexin聚在一起, 其中与大豆、苜蓿、向日葵亲缘关系较近, 其次是拟南芥; 但个别AnnAhs与单子叶植物和低等植物annexin聚在一起。30个AnnAhs均无跨膜结构域, 其中有16个AnnAhs定位于细胞质, 其余定位不明确。对AnnAhs可变剪切分析显示, 仅有11个发生可变剪切事件, 占38%; 根中发生的最多, 其次是叶中, 种子中最少。根据表达谱数据分析发现, AnnAhs在seed2和根中表达量较高, 其次是seed1, 在叶中表达量较低。本文可为花生抗性育种提供一定的理论支撑。

关键词: 花生, 膜联蛋白, 基因结构分析, 可变剪切分析, 表达模式分析

Abstract:

Annexin is a kind of calcium-dependent phospholipid binding proteins involved in the regulation of plant metabolism, growth and development, drought resistance and salt tolerance, and its structure is species-specific in different plants. In order to have a systematic analysis of the annexin gene family of peanut, we identified 30 annexin genes from the peanut genome database, and analyzed their characteristics using bioinformatics method. Peanut annexin (annexin of Arachis hypogaea, AnnAh) genes were unevenly distributed on 13 chromosomes, with 13 in A genome and 17 in B genome. There were 2 to 8 introns in the AnnAhs, with 5 to 6 introns in most AnnAhs. Phylogenetic analysis showed that the clustering relationship was complex. The annexins of lower plant, monocotyledonous and dicotyledonous plants were distributed at interval, with AnnAhs inserting in each branch. However, in each small branch, AnnAhs were basically clustered with the dicotyledonous plant annexins, and close to soybean, alfalfa and sunflower, followed by Arabidopsis; but several AnnAhs were associated with monocotyledonous and lower plant annexins. All 30 AnnAhs had no transmembrane domain, and 16 of them were located in cytoplasm, and the others’ localization was uncertain. Results of alternative splicing (AS) analysis of AnnAhs showed that only 11 AnnAhs experienced AS, which accounted for about 38% of all AnnAhs; the AS events occurred most in roots, followed by leaves, and the least in seeds. The expression level of AnnAhs was high in seed2 and root, followed by seed1, and lower in leaf. The comprehensive analysis of AnnAhs can provide some theoretical support for peanut resistance breeding.

Key words: peanut, annexin, gene structure analysis, alternative splicing analysis, expression pattern analysis

表1

Anneixn家族基因"

基因名称
Gene name
染色体位置
Chr. position
氨基酸个数
Amino acid number
亚细胞定位
Subcellular localization
蛋白完整性
Protein integrity
Annexin
结构域
Annexin
domain
重复序列
Repetitive sequence
其他结构域
Other domains
Aradu.V26BD Aradu.A03 279 C 完整 Complete 4 4 0
Aradu.86DER Aradu.A03 286 不完整 Incomplete 4 3 0
Aradu.KJ1YM Aradu.A04 274 不完整 Incomplete 3 2 0
Aradu.3L5NK Aradu.A05 315 C 完整 Complete 4 4 0
Aradu.WYZ5E Aradu.A05 323 C 不完整 Incomplete 4 4 0
Aradu.9BC7H Aradu.A07 342 C 不完整 Incomplete 4 4 0
Aradu.23XWK Aradu.A08 309 C 不完整 Incomplete 3 3 0
Aradu.N8MUP Aradu.A08 279 不完整 Incomplete 3 3 0
Aradu.4J11T Aradu.A08 339 不完整 Incomplete 3 3 0
Aradu.S16C5 Aradu.A08 321 完整 Complete 4 4 0
Aradu.SCC75 Aradu.A10 266 C 不完整 Incomplete 3 3 0
Aradu.IZQ3Z Aradu.A10 315 C 完整 Complete 4 4 0
Aradu.MBZ2M Aradu.A10 333 完整 Complete 2 2 0
Araip.1LR8I Araip.B02 89 C 不完整 Incomplete 2 2 0
Araip.KR6F4 Araip.B03 323 完整 Complete 2 2 2
Araip.X0F2S Araip.B03 317 完整 Complete 4 4 0
Araip.CCM9G Araip.B03 286 不完整 Incomplete 4 3 0
Araip.RGY04 Araip.B04 142 C 不完整 Incomplete 1 1 0
Araip.R8WRM Araip.B04 207 不完整 Incomplete 3 2 0
Araip.HD6QL Araip.B05 316 C 完整 Complete 4 4 0
Araip.0MR1X Araip.B05 315 C 完整 Complete 4 4 0
Araip.FX5SI Araip.B07 316 C 完整 Complete 4 4 0
Araip.J58EQ Araip.B08 135 C 不完整 Incomplete 2 2 0
Araip.YGP4J Araip.B08 315 完整 Complete 3 3 0
Araip.6KP6U Araip.B08 295 完整 Complete 3 3 0
Araip.Y8EDR Araip.B08 321 完整 Complete 4 4 0
Araip.X9BIG Araip.B10 317 C 完整 Complete 4 4 0
Araip.Z0Q6Q Araip.B10 311 C 完整 Complete 4 3 0
Araip.WA456 Araip.B10 315 C 完整 Complete 4 3 0
Araip.RPP1M Araip.B10 364 完整 Complete 2 2 0
Aradu.V26BD Aradu.A03 279 C 完整 Complete 4 4 0
Aradu.86DER Aradu.A03 286 不完整 Incomplete 4 3 0

图1

植物annexin蛋白聚类分析 红色: 双子叶植物; 绿色: 单子叶植物; 黑色: 低等植物; 黑色圆点: AnnAhs。"

图2

AnnAhs基因结构分析 因部分AnnAhs无UTR, 故均用ORF进行基因结构分析。"

图3

AnnAhs的保守结构域分析"

表2

AnnAhs可变剪切分析"

基因名称
Name
种子前期
Seed1
种子后期
Seed2

Root

Leaf
Aradu.S16C5 TSS
Aradu.N8MUP TSS
Aradu.3L5NK TTS
Araip.CCM9G TTS, AE TTS, AE
Araip.WA456 TTS, AE
Aradu.IZQ3Z TTS, AE AE AE AE
Araip.HD6QL TSS, ES TSS, ES
Aradu.KJ1YM TTS TTS TTS, AE, ES
Araip.Z0Q6Q ES
Araip.R8WRM ES
Araip.RPP1M ES

图4

AnnAhs表达模式分析"

[1] Ahmed I, Yadav D, Shukla P, Kirti P B . Heterologous expression of Brassica juncea annexin, AnnBj2 confers salt tolerance and ABA insensitivity in transgenic tobacco seedlings. Funct Integr Genomic, 2018,18:569-529.
doi: 10.1007/s10142-018-0614-z
[2] 李瑞梅, 王雨晴, 张帆, 袁帅, 耿梦婷, 姚远, 刘姣, 段瑞军, 符少萍, 胡新文, 郭建春 . 植物膜联蛋白(Annexin)的研究进展. 基因组学与应用生物学, 2017,36:2128-2136.
Li R M, Wang Y Q, Zhang F, Yuan S, Geng M T, Yao Y, Liu J, Duan R G, Fu S P, Hu X W, Guo J C . Research progress on plant annexin. Genomic Appl Biol, 2017,36:2128-2136 (in Chinese with English abstract).
[3] 叶卫华 . 膜联蛋白A7(annexin A7)在胃癌凋亡中作用的研究 . 河北医科大学博士学位论文, 河北石家庄, 2017.
Ye W H . The Role of A7(Annexin A7) in Apoptosis of Gastric Carcinoma. PhD Dissertation of Hebei Medical University, Shijiazhuang, Hebei, China, 2017 (in Chinese with English abstract).
[4] Galvão I, Vago J P, Barroso L C, Tavares L P ,Queiroz-Junior C M, Costa V V, Carneiro F S, Ferreira T P, Silva P M, Amaral F A, Sousa L P, Teixeira M M. Annexin A1 promotes timely resolution of inflammation in murine gout. Eur J Immunol, 2017,47:585-596.
doi: 10.1002/eji.201646551 pmid: 27995621
[5] Konopkapostupolska D, Clark G . Annexins as overlooked regulators of membrane trafficking in plant cells. Int J Mol Sci, 2017,18:863.
doi: 10.3390/ijms18040863 pmid: 5412444
[6] Hua K L, Li Y, Zhao Q, Fan L Q, Tan B B, Gu J B . Downregulation of Annexin A11 (ANXA11) inhibits cell proliferation, invasion, and migration via the AKT/GSK-3β pathway in gastric cancer. Med Sci Monitor, 2018,24:149-160.
doi: 10.12659/MSM.905372 pmid: 29306955
[7] Pi F, Zhang H, Li H, Thiviyanathan V, Gorenstein D G, Sood A K, Guo P . RNA nanoparticles harboring annexin A2 aptamer can target ovarian cancer for tumor-specific doxorubicin delivery. Nanomedicine(UK), 2017,13:1183-1193.
doi: 10.1016/j.nano.2016.11.015 pmid: 27890659
[8] Yu S, Bian H, Gao X, Gui L . Annexin A9 promotes invasion and metastasis of colorectal cancer and predicts poor prognosis. Int J Mol Med, 2018,41:2185-2192.
pmid: 29393380
[9] 杜锐 . Annexin A3 (ANXA3)对乳腺癌的调控研究与乳腺癌患者来源移植瘤模型的建立. 中国科学技术大学博士学位论文, 安徽合肥, 2017.
Du R . The Role of Annexin A3 in Regulating Breast Cancer and the Establishment of Breast Cancer PDX Model. PhD Dissertation of University of Science and Technology of China, Hefei, Anhui, China, 2017 (in Chinese with English abstract).
[10] 刘琰 . Annexin A2对卵巢癌生物学行为的影响及机制研究 . 郑州大学博士学位论文, 河南郑州, 2017.
Liu Y . The Effects and Mechanism of Annexin A2 on Biological Behavior of Ovarian Cancer. PhD Dissertation of Zhengzhou University, Zhengzhou, Henan, China, 2017 (in Chinese with English abstract).
[11] Xu L, Tang Y M, Gao S Q, Su S C, Hong L, Wang W W, Fang Z F, Li X Y, Ma J X, Quan W, Sun H, Li X, Wang Y B, Liao X Z, Gao J G, Zhang F G, Li L, Zhao C P . Comprehensive analyses of the annexin gene family in wheat. BMC Genomics, 2016,17:415.
doi: 10.1186/s12864-016-2750-y pmid: 4884362
[12] Zhang F, Jin X X, Wang L K, Li S F, Wu S, Cheng C Z, Zhang T Z, Guo W Z . A cotton annexin affects fiber elongation and secondary cell wall biosynthesis associated with Ca 2+ influx, ROS homeostasis, and actin filament reorganization . Plant Physiol, 2016,171:1750-1770.
doi: 10.1104/pp.16.00597
[13] 楚璞 . 莲膜联蛋白的鉴定及其在种子耐热性和活力中的功能研究. 中山大学博士学位论文, 广东广州, 2011.
Chu P . Identification and Functional Analysis of a Nelumbo nuciferaa Annexin Involved in Seed Thermotolerance and Vigor. PhD Dissertation of Sun Yat-Sen University. Guangzhou, Guangdong, China, 2011 (in Chinese with English abstract).
[14] 褚翠萍 . 拟南芥膜联蛋白的基因表达、亚细胞定位和AnnAt3响应非生物胁迫的初步研究. 山东农业大学硕士学位论文, 山东泰安, 2012.
doi: 10.7666/d.y2116641
Chu C P . Gene Expression, Subcellular Localization of Arabidopsis Annexins and Abiotic Stress Response of Ann At3. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2005 (in Chinese with English abstract).
doi: 10.7666/d.y2116641
[15] 何美敬, 穆国俊, 侯名语, 陈焕英, 崔顺立, 杨鑫雷, 刘立峰 . 植物膜联蛋白的结构及功能研究进展. 西北植物学报, 2013,33:2567-2574.
He M J, Mu G J, Hou M Y, Chen H Y, Cui S L, Yang X L, Liu L F . Advances in structure and function of plant annexins. Acta Bot Boreali-Occid Sin, 2013,33:2567-2574 (in Chinese with English abstract).
[16] 褚翠萍, 任秋萍, 孔兰静, 王秀玲 . 拟南芥膜联蛋白2的亚细胞定位研究. 中国细胞生物学学报, 2017,39:873-880.
Zhu C P, Ren Q P, Kong L G, Wang X L . The subcellular localization of annexin 2 in Arabidopsis. Chin J Cell Biol, 2017,39:873-880 (in Chinese with English abstract).
[17] Clark G B, Dauwalder M, Roux S J . Purification and immunolocalization of an annexin-like protein in pea seedlings. Planta, 1992,187:1-9.
doi: 10.1007/BF00201617 pmid: 11538119
[18] Clark G B, Dauwalder M, Roux S J . Immunological and biochemical evidence for nuclear localization of annexin in peas. Plant Physiol Biochem, 1998,36:621-627.
doi: 10.1016/S0981-9428(98)80010-7 pmid: 11542469
[19] Seals D F, Parrish M L, Randall S K . A 42-kilodalton annexin-like protein is associated with plant vacuoles. Plant Physiol, 1994,106:1403-1412.
doi: 10.1104/pp.106.4.1403
[20] Thonat C, Mathieu C, Crevecoeur M, Penel C, Gaspar T, Boyer N . Effects of a mechanical stimulation of localization of annexin-like proteins in Bryonia dioica internodes. Plant Physiol, 1997,114:981-988.
doi: 10.1093/molehr/gam026 pmid: 9232879
[21] 郑昌林 . 花生基因组中重复基因间基因置换的比较分析. 华北理工大学硕士学位论文, 河北唐山, 2017.
Zheng C L . Comparative Analysis of Repetitive Gene Replacement in Peanut Genome. MS Thesis of North China University of Science and Technology, Tangshan, Hebei, China, 2017 (in Chinese with English abstract).
[22] 王靖 . 花生膜联蛋白基因AnnAh1AnnAh2的功能验证 . 山东大学硕士学位论文,山东济南, 2014.
Wang J . Functional Research of Annexin Gene AnnAh1 and AnnAh2 from Arachis hypogaea L. MS Thesis of Shandong University, Jinan, Shandong, China, 2017 (in Chinese with English abstract).
[23] 何美敬, 杨鑫雷, 崔顺立, 穆国俊, 侯名语, 陈焕英, 刘立峰 . 花生膜联蛋白基因(Annexin)家族的分子克隆和鉴定. 中国作物学会学术年会论文集, 2014.
He M J, Yang X L, Cui S L, Mu G J, Hou M Y, Chen H Y, Liu L F . Molecular cloning and identification of annexin gene family from peanut. In: Proceedings of the Crop Science Society of China, 2014(abstract in Chinese).
[24] Trapnell C, Williams B A, Pertea G, Mortazavi A ,Kwan G, van Baren M J, Salzberg S L, Wold B J . Transcript assembly and quantification by RNA Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010,28:511-515.
doi: 10.1038/nbt.1621 pmid: 20436464
[25] Florea L, Li S, Salzberg S L . Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. Eur PMC, 2013,2:188.
doi: 10.12688/f1000research.2-188.v1 pmid: 3892928
[26] Clark G B, Dauwalder M, Roux S J . Immunolocalization of an annexin-like protein in corn. Adv Space Res, 1994,14:341-346.
doi: 10.1016/0273-1177(94)90421-9 pmid: 11537937
[27] Jami S K, Clark G B, Ayele B T, Ashe P, Kirti P B . Genome-wide comparative analysis of annexin superfamily in plants. PLoS One, 2012,7:47801.
doi: 10.1371/journal.pone.0047801 pmid: 23133603
[28] 王立科, 张边江, 唐宁, 杨平, 周峰, 陈全战 . 植物膜联蛋白基因研究进展. 分子植物育种, 2016,14:2060-2065.
Wang L K, Zhang B J, Tang N, Yang P, Zhou F, Chen Q Z . Research advances of annexin genes in plants. Mol Plant Breed, 2016,14:2060-2065 (in Chinese with English abstract).
[29] Vogel C, Chothia C . Protein family expansions and biological complexity. PLoS Comput Biol, 2006,2:48.
doi: 10.1371/journal.pcbi.0020048 pmid: 16733546
[30] Schmutz J, Cannon S B, Schlueter J, Ma J X, Mitros T, Nelson W, Hyten D L, Song Q J, Thelen J J, Cheng J L, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S Q, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J C, Tian Z X, Zhu L C, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A . Genome sequence of the palaeopolyploid soybean. Nature, 2010,463:178-183.
doi: 10.1038/nature08957
[31] Kandasamy M K, Burgos-Rivera B ,McKinney E C, Ruzicka D R, Meagher R B . Class-specific interaction of profilin and ADF isovariants with actin in the regulation of plant development. Plant Cell, 2007,19:3111-3126.
doi: 10.1105/tpc.107.052621
[32] Koehler P E, Odell G V . Factors affecting the formation of pyrazine compounds in sugara-mine reactions. J Agric Food Chem, 1970,18:895-898.
doi: 10.1021/jf60171a041
[33] Clark G B, Sessions A, Eastburn D J, Roux S J . Differential expression of members of the annexin multigene family in Arabidopsis. Plant Physiol, 2001,126:1072-1084.
doi: 10.1104/pp.126.3.1072
[34] 李立奇, 万瑛 . 蛋白质的亚细胞定位预测研究进展. 免疫学杂志, 2009,25:602-604.
Li L Q, Wan Y . Advancement of predicting proteins in subcellular localization sites. Immunol J, 2009,25:602-604 (in Chinese with English abstract).
[35] 李兵. 棉花( Gossypium hirsutum)膜联蛋白基因克隆鉴定及功能研究. 华中师范大学博士学位论文, 湖北武汉, 2012.
Li B . Molecular Characterization and Function of the Cotton Annexin Genes. PhD Dissertation of Central China normal University, Wuhan, Hubei, China, 2012 (in Chinese with English abstract).
[36] 王雨晴, 张帆, 李瑞梅, 胡新文, 郭建春 . 木薯MeAnn1基因的克隆及表达分析. 分子植物育种, 2015,13:2477-2483.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.021
Wang Y Q, Zhang F, Li R M, Hu X W, Guo J C . Cloning and expression of MeAnn1 gene from cassava(Manihot esculenta Crantz). Mol plant breed, 2015,13:2477-2483 (in Chinese with English abstract).
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.021
[37] Breton G, Vazqueztello A, Danyluk J, Sarhan F . Two novel intrinsic annexins accumulate in wheat membranes in response to low temperature. Plant Cell Physiol, 2000,41:177-184.
doi: 10.1093/pcp/41.2.177 pmid: 10795312
[38] Carvalho-Niebel F D, Timmers A C J, Chabaud M, Defaux-Petras A, Barker D G . The Nod factor-elicited annexin MtAnn1 is preferentially localised at the nuclear periphery in symbiotically activated root tissues of Medicago truncatula. Plant J, 2002,32:343-352.
doi: 10.1046/j.1365-313X.2002.01429.x pmid: 12410812
[39] 章天骄 . 可变剪接的生物信息数据分析综述. 生物信息学, 2012,10:61-64.
doi: 10.3969/j.issn.1672-5565.2012.01.13
Zhang T J . Review of bioinformation data analysis with alternative splicing. Chin J Bioinformatic, 2012,10:61-64 (in Chinese with English abstract).
doi: 10.3969/j.issn.1672-5565.2012.01.13
[40] Wilkinson J Q, Lanahan M B, Conner T W, Klee H J . Identification of mRNAs with enhanced expression in ripening strawberry fruit using polymerase chain reaction differential display. Plant Mol Biol, 1995,27:1097-1108.
doi: 10.1007/BF00020883 pmid: 7766892
[41] 那杰, 杨怀义 . 植物Annexins研究进展. 辽宁师范大学学报(自然科学版), 2004,27:464-467.
doi: 10.3969/j.issn.1000-1735.2004.04.023
Na J, Yang H Y . Aadvances in the study of plant annexins. J Liaoning Norm Univ(Nat Sci Edn), 2004,27:464-467 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-1735.2004.04.023
[42] Baucher M, Oukouomi L Y, Vandeputte O M, Bopopi J M, Moussawi J, Vermeersch M, Mol A, Jaziri M E, Homble F, Perez-Morga D . Ntann12 annexin expression is induced by auxin in tobacco roots. J Exp Bot, 2011,62:4055-4065.
doi: 10.1093/jxb/err112 pmid: 3134359
[43] 巩子英, 宋雪, 陈功友, 朱家璧, 俞冠翘, 邹华松 . 苜蓿膜联蛋白MtAnn3基因的鉴定及其在根毛发育中的功能. 科学通报, 2012,57:431-437.
doi: 10.1360/csb2012-57-6-431
Gong Z Y, Song X, Chen G Y, Zhu J B, Yu G Q, Zou H S . Identification of MtAnn3 gene of alfalfa and its function in root hair development. Chin Sci Bull, 2012,57:431-437 (in Chinese).
doi: 10.1360/csb2012-57-6-431
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[7] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[10] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[14] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!