欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (4): 546-555.doi: 10.3724/SP.J.1006.2019.84096

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价

黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友()   

  1. 河南省农业科学院经济作物研究所 / 农业部黄淮海油料作物重点实验室 / 河南省油料作物遗传改良重点实验室, 河南郑州 450002
  • 收稿日期:2018-07-10 接受日期:2018-12-24 出版日期:2019-04-12 网络出版日期:2019-01-04
  • 通讯作者: 张新友
  • 作者简介:huangbingyan@aliyun.com
  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项(CARS-13);河南省花生产业技术体系和玛氏-中国高油酸花生育种计划项目(Mars-China HOAP2013-2018)

Improvement of oleic acid content in peanut (Arachis hypogaea L.) by marker assisted successive backcross and agronomic evaluation of derived lines

HUANG Bing-Yan,QI Fei-Yan,SUN Zi-Qi,MIAO Li-Juan,FANG Yuan-Jin,ZHENG Zheng,SHI Lei,ZHANG Zhong-Xin,LIU Hua,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You()   

  1. Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Huanghuaihai Key Laboratory of Oil Crops, Ministry of Agriculture / Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, Henan, China
  • Received:2018-07-10 Accepted:2018-12-24 Published:2019-04-12 Published online:2019-01-04
  • Contact: Xin-You ZHANG
  • Supported by:
    This study was supported by the China Agricultural Research System(CARS-13);Henan Agricultural Research System(Mars-China HOAP2013-2018)

摘要:

高油酸是花生重要的品质性状, 高油酸花生及其制品具有较好的品质稳定性和较高的营养和保健价值。我国高油酸花生的育成品种类型较少, 遗传背景不够丰富, 育种手段比较单一。针对上述问题, 本研究开发了AS-PCR-MP高油酸分子标记检测方法, 优化了KASP分子标记检测体系, 利用分子标记辅助连续回交, 结合近红外品质快速检测技术及南繁加代技术, 以河南省大面积推广的豫花15、远杂9102、豫花9327、豫花9326四个不同类型品种为轮回亲本, 5年内连续回交4代、自交4代, 定向获得了4个轮回亲本遗传背景的BC4F4和BC4F5稳定高油酸改良材料24个。调查分析了BC4F4和BC4F5单株的13个农艺性状与轮回亲本的相似度, 并利用轮回亲本与非轮回亲本之间的差异SNP的KASP分子标记进行了BC4F4和BC4F5株系的轮回亲本遗传背景检测。结果表明, 轮回亲本的遗传背景在BC4F5的比例为79.49%~92.31%。本研究为快速高效改良花生油酸含量探索了新的方法, 获得的新品系拓展了高油酸花生的遗传背景, 获得的一系列近等基因系可作为遗传研究材料进一步加以利用。

关键词: 花生, 高油酸, 脂肪酸脱氢酶(FAD2), 分子标记辅助回交, 遗传背景

Abstract:

High oleic acid content is a key quality trait in peanut varieties. Peanut and its products with high oleic acid content possess better quality stability and nutrition for benefiting peanut processing and human health. To date, the released high oleic acid varieties were few and most of which were derived by conventional breeding with narrow genetic background. In this study, Allele Specific-PCR-Mispairing (AS-PCR-MP) method and optimized KASP assay system were developed to facilitate successive marker-assisted backcross breeding strategy for high oleic acid content. We also applied Near Infra-Red technology and winter nursery in the five-year successive backcross and selfing. Four types of cultivars (Yuhua 15, Yuanza 9102, Yuhua 9327, and Yuhua 9326) were selected as recurrent parents for backcrossing. Twenty-four BC4F4 and BC4F5 stable lines with different genetic backgrounds and high oleic acid content were produced from four generations of successive backcrosses and four generations of BC4 selfing. Similarities between BC4 selfing progenies and recurrent parents were analyzed based on 13 agronomic traits. The recovery rate of genetic background for BC4F4 and BC4F5 was investigated by designing KASP assays with SNPs that were polymorphic between recurrent parents and non-recurrent parents. The proportion of genetic background of recurrent parents in BC4F5 was 79.49% to 92.31%. This study provides a new strategy for efficiently improving oleic acid content of peanuts with diverse genetic backgrounds. The near isogenic lines obtained in this study could be valuable genetic resources for further utilizations.

Key words: peanut (Arachis hypogaea L.), high oleic acid content, fatty acid desaturase (FAD2), marker assisted backcross (MABC), genetic background

图1

分子标记辅助连续回交高油酸花生育种路线图 RP: 轮回亲本; HO: 高油酸亲本; AS-PCR-MP: 位点特异PCR; NIR: 近红外检测。"

图2

AS-PCR-MP扩增的F1的4种基因型带型"

图3

KASP检测BC4F2单株FAD2的突变位点SNP"

表1

远杂9102 BC4F2:3后代油酸含量分布及其F2基因型"

F2:3油酸含量
F2:3 oleic acid content
F2基因型
Related F2 genotype
F2:3单株数量
Number of F2:3 plants
F2基因型比例
Genotype ratio
<38% _ _ _ _*; _ol1 _ _ 86 9.4/16
38%-48% _ _ _ol2; ol1ol1 _ _ 29 3.2/16
48%-68% ol1ol1 _ol2; _ol1ol2ol2; _ol1 _ol2; __ ol2ol2 25 2.7/16
>68% ol1ol1ol2ol2 7 0.8/16
合计Total 147

图4

KASP检测BC4F4:5 FAD2的突变位点SNP"

图5

不同轮回亲本的BC4F4的性状分布箱线图 蓝色粗实线代表中位数, 黑色虚线代表轮回亲本平均数, 粉色虚线代表非轮回亲本平均数。YH15: 豫花15; YZ9102: 远杂9102; YH9327: 豫花9327; YH9326: 豫花9326。"

表2

KASP检测BC4F5株行遗传背景"

遗传背景
Genetic background
YH15 BC4F5 lines YH15 BC4F4 lines YZ9102 BC4F5 lines YZ9102 BC4F4 lines
Z172000 Z172003 Z172025 Z172250 Z172290 Z172081 Z172086 Z172291 Z172299
轮回亲本RP (%) 79.49 84.62 92.31 66.67 77.78 87.50 87.50 83.33 83.33
杂合率Heterozygous (%) 7.69 7.69 7.69 22.22 0.00 6.25 6.25 16.67 16.67
非轮回亲本NRP (%) 12.82 7.69 0.00 11.11 22.22 6.25 6.25 0.00 0.00

表3

优良单株与亲本荚果及籽仁性状比较"

基因型
Genotype
优良单株数(个)
No. of superior plants
油酸含量
Oleic acid (%)
油亚比
O/L
荚果类型
Pod type
荚果网纹
Pod reticulation
种皮颜色
Testa color
豫花15
Yuhua 15
38.71 0.96 普通型
Virginia
粗浅
Thick and slight
粉红色
Tan
远杂9102
Yuanza 9102
34.50 0.81 珍珠豆型
Spanish
细深
Thin and prominent
粉红色
Tan
豫花9327
Yuhua 9327
39.25 0.98 普通型
Virginia
粗浅
Thick and slight
粉红色
Tan
豫花9326
Yuhua 9326
36.01 0.82 普通型
Virginia
粗深
Thick and prominent
粉红色
Tank
开农176
Kainong 176
70.93 5.00 普通型
Virginia
粗浅
Thick and slight
粉红色
Tan
DF12 75.09 7.52 普通型
Virginia
细浅
Thin and slight
粉红色
Tan
开选016
Kaixuan 016
70.03 4.96 普通型
Virginia
粗浅
Thick and slight
粉红色
Tan
高油酸豫花15
HOAP YH 15*
8 70.26-74.21 5.14-10.72 普通型
Virginia
粗浅
Thick and slight
粉红色
Tan
高油酸远杂9102
HOAP YZ 9102*
8 73.37-79.64 8.81-42.82 珍珠豆型
Spanish
细深
Thin and prominent
粉红色
Tan
高油酸豫花9327
HOAP YH 9327*
2 71.90-76.37 6.90-11.77 普通型
Virginia
粗浅
Thick and slight
粉红色
Tan
高油酸豫花9326
HOAP YH 9326*
6 73.63-82.51 6.79-34.96 普通型
Virginia
粗深
Thick and prominent
粉红色
Tan
[1] O’Keefe S F, Knauft D A . Comparison of oxidative stability of high and normal-oleic peanut oils. J Am Oil Chem Soc, 1993,70:489-492.
doi: 10.1007/BF02542581
[2] Talcott S T ,Pozo-Insfran D D,Gorbet D W . Polyphenolic and antioxidant changes during storage of normal, mid, and high oleic acid peanuts. Food Chem, 2005,89:77-84.
doi: 10.1016/j.foodchem.2004.02.020
[3] Talcott S T, Duncan C E, Gorbet D W . Polyphenolic content and sensory properties of normal and high oleic acid peanuts. Food Chem, 2005,90:379-388.
doi: 10.1016/j.foodchem.2004.04.011
[4] Vassiliou E K, Garcia C, Tadros J H, Chakraborty G, Toney J H . Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems. Lipids Health Dis, 2009,8:25-34.
doi: 10.1186/1476-511X-8-25 pmid: 19558671
[5] Norden A J, Gorbet D W, Knauft D A, Young C T . Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci, 1987,14:7-11.
doi: 10.3146/i0095-3679-14-1-3
[6] 禹山林 , Isleib T G. 美国大花生脂肪酸的遗传分析. 中国油料作物学报, 2000,22:34-37.
Yu S L, Isleib T G . The inheritance of high oleic acid content in peanut of Virginia type in USA. Chin J Oil Crop Sci, 2000,22:34-37 (in Chinese with English abstract).
[7] 黄冰艳, 张新友, 苗利娟, 刘华, 秦利, 徐静, 张忠信, 汤丰收, 董文召, 韩锁义, 刘志勇 . 花生油酸和亚油酸含量的遗传模式分析. 中国农业科学, 2012,45:617-624.
Huang B Y, Zhang X Y, Miao L J, Liu H, Qin L, Xu J, Zhang Z X, Tang F S, Dong W Z, Han S Y, Liu Z Y . Inheritance analysis of oleicacid and linoleic acid content of Arachis hypogaea L. Sci Agric Sin, 2012,45:617-624 (in Chinese with English abstract).
[8] Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A . The high oleate trait in the cultivated peanut (Arachis hypogaea L.): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000,263:796-805.
[9] Jung S, Powell G, Moore K, Abbott A . The high oleate trait in the cultivated peanut (Arachis hypogaea L.): II. Molecular basis and genetics of the trait. Mol Gen Genet, 2000,263:806-811.
doi: 10.1007/s004380000243 pmid: 10905348
[10] Lopez Y, Nadaf H L, Smith O D, Connell J P, Reddy A S, Fritz A K . Isolation and characterization of the Δ 12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet, 2000,101:1131-1138.
[11] Lopez Y, Smith O D, Senseman S A, Rooney W L . Genetic factors influencing high oleic acid content in Spanish market-type peanut cultivars. Crop Sci, 2001,41:51-56.
doi: 10.2135/cropsci2001.41151x
[12] Bruner A C, Jung S, Abbott A G, Powell G L . The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to Asparagine. Crop Sci, 2001,41:522-526.
doi: 10.2135/cropsci2001.412522x
[13] Chu Y, Holbrook C C, Tillman B L, Person G, Ozias-Akins P . Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome J, 2011,4:110-117.
doi: 10.3835/plantgenome2011.01.0001
[14] Barkley N A, Wang M L, Pittman R N . Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Mol Breed, 2009,25:541-548.
doi: 10.1007/s11032-009-9338-z
[15] Chen Z, Wang M L, Barkley N A, Pittman R N . A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol Biol Rep, 2010,28:542-548.
[16] 徐平丽, 唐桂英, 付春, 刘玮, 鲁成凯, 姜言生, 刘皓, 单雷 . 高通量检测花生油酸含量相关基因AhFAD2等位变异的方法. 农业生物技术学报, 2016,24:1364-1373.
Xu P L, Tang G Y, Fu C, Liu W, Lu C K, Jiang Y S, Liu H, Shan L . Methods for high-throughput detecting the allelic variation of AhFAD2 gene related with oleic acid content in peanut(Arachis hypogaea). J Agric Biotechnol, 2016,24:1364-1373 (in Chinese with English abstract).
[17] Zhao S Z, Li A, Li C, Xia H, Zhao C, Zhang Y, Hou L, Wang X . Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Elect J Biotechnol, 2017,25:9-12.
doi: 10.1016/j.ejbt.2016.10.010
[18] 陈静 . 高油酸花生遗传育种研究进展. 植物遗传资源学报, 2011,12:190-196.
Chen J . Advances in genetics and breeding of high oleic acid peanut. J Plant Genet Resour, 2011,12:190-196 (in Chinese with English abstract).
[19] 王传堂, 朱立贵 . 高油酸花生.上海: 上海科学技术出版社, 2017. pp 189-241.
Wang C T, Zhu L G. High Oleic Acid Peanut. Shanghai: Shanghai Scientific and Technical Publisher, 2017. pp 189-241(in Chinese).
[20] 禹山林 . 中国花生品种及其系谱. 上海: 上海科学技术出版社, 2008. pp 322-345.
Yu S L. Chinese Peanut Variety and Pedigree. Shanghai: Shanghai Scientific and Technical Publisher, 2008. pp 322-345(in Chinese).
[21] Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A . High-oleate peanut mutants results from a MITE insertion into the FAD2 gene. Theor Appl Genet, 2004,108:1492-1502.
[22] Trick M, Mugford S G, Jiang C C, Febrer M, Uauy C . Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol, 2012,12:14.
doi: 10.1186/1471-2229-12-14 pmid: 22280551
[23] 姜慧芳, 段乃雄 . 花生种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 65-72.
Jiang H F, Duan N X. Descriptors and Dada Standard for Peanut. Beijing: China Agriculture Press, 2006. pp 65-72(in Chinese).
[24] 姜慧芳, 任小平, 黄家权, 廖伯寿, 雷永 . 中国花生小核心种质的建立及高油酸基因源的发掘. 中国油料作物学报, 2008,30:294-299.
Jiang H F, Ren X P, Huang J Q, Liao B S, Lei Y . Establishment of peanut mini core collection in China and exploration of new resource with high oleate. Chin J Oil Crop Sci, 2008,30:294-299 (in Chinese with English abstract).
[25] 雷永, 姜慧芳, 文奇根, 黄家权, 晏立英, 廖伯寿 . ahFAD2A 等位基因在中国花生小核心种质中的分布及其与种子油酸含量的相关性分析. 作物学报, 2010,36:1864-1869.
Lei Y, Jiang H F, Wen Q G, Huang J Q, Yan L Y, Liao B S . Frequencies of ahFAD2A alleles in Chinese peanut mini core collection and its correlation with oleic acid content. Acta Agron Sin, 2010,36:1864-1869 (in Chinese with English abstract).
[26] 黄冰艳, 张新友, 苗利娟, 高伟, 韩锁义, 董文召, 汤丰收, 刘志勇 . 花生ahFAD2A等位基因表达变异与种子油酸积累关系. 作物学报, 2012,38:1752-1759.
Huang B Y, Zhang X Y, Miao L J, Gao W, Han S Y, Dong W Z, Tang F S, Liu Z Y . Allelic expression variation of ahFAD2A and its relationship with oleic acid accumulation in peanut. Acta Agron Sin, 2012,38:1752-1759 (in Chinese with English abstract).
[27] 黄冰艳, 张新友, 董文召, 臧秀旺, 苗利娟, 刘华, 高伟, 韩锁义, 汤丰收 . 河南省地方花生资源的品质性状及其育种利用途径. 植物遗传资源学报, 2012,13:414-417.
Huang B Y, Zhang X Y, Dong W Z, Zang X W, Miao L J, Liu H, Gao W, Han S Y, Tang F S . Profiling of quality characteristics for peanut germplasm from Henan Province and its breeding strategy. J Plant Genet Resour, 2012,13:414-417 (in Chinese with English abstract).
[28] 张照华, 王志慧, 淮东欣, 谭家壮, 陈剑洪, 晏立英, 王晓军, 万丽云, 陈傲, 康彦平, 姜慧芳, 雷永, 廖伯寿 . 利用回交和分子标记辅助选择快速培养高油酸花生品种及其评价. 中国农业科学, 2018,51:1641-1652.
Zhang Z H, Wang Z H, Huai D X, Tan J Z, Chen J H, Yan L Y, Wang X J, Wan L Y, Chen A, Kang Y P, Jiang H F, Lei Y, Liao B S . Fast development of high oleate peanut cultivars by using marker-assisted backcrossing and their evaluation. Sci Agric Sin, 2018,51:1641-1652 (in Chinese with English abstract).
[29] 于明洋, 孙明明, 郭悦, 姜平平, 雷永, 黄冰艳, 冯素萍, 郭宝珠, 隋炯明, 王晶珊, 乔利仙 . 利用回交法快速选育高油酸新品系. 作物学报, 2017,43:855-861.
Yu M Y, Sun M M, Guo Y, Jiang P P, Lei Y, Huang B Y, Feng S P, Guo B Z, Sui J M, Wang J S, Qiao L X . Breeding new peanut lines with high oleic acid content using backcross method. Acta Agron Sin, 2017,43:855-861 (in Chinese with English abstract).
[30] 赵术珍, 侯蕾, 李长生, 赵传志, 任丽, 李爱芹, 邓丽, 夏晗, 王兴军 . 分子标记辅助回交选育高油酸花生新种质. 中国油料作物学报, 2017,39:30-36.
Zhao S Z, Hou L, Li C S, Zhao C Z, Ren L, Li A Q, Deng L, Xia H, Wang X J . Development of high oleic acid peanut from molecular marker assisted selection. Chin J Oil Crop Sci, 2017,39:30-36 (in Chinese with English abstract).
[31] Varshney R K . Exciting journey of 10 years from genomes to fields and markets: some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Sci, 2016,242:98-107.
doi: 10.1016/j.plantsci.2015.09.009 pmid: 26566828
[32] Fox G . Near infrared reflectance as a rapid and inexpensive surrogate measure for fatty acid composition and oil content of peanut (Arachis hypogaea L.). J Near Infrared Spectrosc, 2005,13:287-291.
doi: 10.1255/jnirs.559
[33] Janila P, Pandey M K, Shasidhar Y, Variath M T, Sriswathi M, Khera P, Manohar S S, Nagesh P, Vishwakarma M K, Mishra G P, Radhakrishnan T, Manivannan N, Dobariya K L, Vasanthi R P, Varshney R K . Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci, 2016,242:203-213.
doi: 10.1016/j.plantsci.2015.08.013 pmid: 26566838
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[7] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[8] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[9] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[10] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[11] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[12] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[13] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[14] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[15] 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!