作物学报 ›› 2019, Vol. 45 ›› Issue (9): 1431-1439.doi: 10.3724/SP.J.1006.2019.81088
CHEN Xiao-Jing,LIU Jing-Hui(),YANG Yan-Ming,ZHAO Zhou,XU Zhong-Shan,HAI Xia,HAN Yu-Ting
摘要:
为探讨盐胁迫对燕麦叶片生理指标及蛋白组的影响, 对燕麦进行6 d盐胁迫(摩尔浓度NaCl∶Na2SO4=1∶1)处理, 测定CK与盐胁迫燕麦叶片MDA含量, SOD、POD活性与游离脯氨酸含量, 并运用Label-Free技术分析叶片差异表达蛋白质。结果表明, 盐胁迫下燕麦叶片MDA含量、SOD、POD活性分别较对照降低了16.7%、23.4%和21.2%, 游离脯氨酸较对照升高1.12%; 满足P-value≤0.05, ratio>2的差异蛋白76个(51个蛋白上调表达, 25个蛋白下调表达); 通过GO注释得到27个差异蛋白显著富集16个代谢路径, 其中氧化还原过程为33.9%, level 3统计富集的生物学过程有氧气结合和氧化还原酶活性; 运用KEGG注释得到22个差异蛋白显著富集10个生化代谢途径, 主要表现在内质网中的蛋白质加工、长寿调节途径、抗原处理和呈现、雌激素信号通路4个过程; STRING蛋白质互作网络显示21个差异蛋白中涉及翻译后修饰、蛋白质周转、分子伴侣功能的有10个, 且HSP70 (F2DYT5)和HSP90(F4Y589)可能在盐胁迫燕麦幼苗的调控中发挥重要作用。
[1] | 杨真, 王宝山 . 中国盐渍土资源现状及改良利用对策. 山东农业科学, 2015,47:125-130. |
Yang Z, Wang B S . Current status of saline soil resources in china and countermeasures for improvement and utilization. Shandong Agric Sci, 2015,47:125-130 (in Chinese with English abstract). | |
[2] | Mahajan S, Tuteja N . Cold, salinity and drought stresses: an overview. Arch Biochem Biophys, 2005,444:139-158. |
[3] | 张恒, 郑宝江, 宋保华, 王思宁, 戴绍军 . 植物盐胁迫应答蛋白质组学分析. 生态学报, 2011,31:6936-6946. |
Zhang H, Zheng B J, Song B H, Wang S N, Dai S J . Proteomics analysis of plant salt stress response. Acta Ecol Sin, 2011,31:6936-6946 (in Chinese with English abstract). | |
[4] | Kim D W, Rakwal R, Agrawal G K, Jung Y H, Shibato J, Jwa N S, Iwahashi Y, Iwahashi H, Kim D H, Shim I S, Usui K . A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis, 2005,26:4521-4539. |
[5] | Parker R, Flowers T J, Moore A L, Harpham N V J . An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot, 2006,57:1109-1118. |
[6] | Sengupta S, Majumder A L . Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta, 2009,229:911-929. |
[7] | Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Laganà A . Identification of changes in Triticum durum L. leaf-proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem, 2008,391:381-390. |
[8] | Huo C M, Zhao B C, Ge R C, Shen Y Z, Huang Z J . Proteomic analysis of the salt tolerance mutant of wheat under salt stress. Acta Genet Sin, 2004,31:1408-1414. |
[9] | Wang B, Song F B . Physiological responses and adaptive capacity of oats to saline-alkali stress. Ecol Environ, 2006,15:625-629. |
[10] | Wang B, Song F B . The effects of saline-alkali stress on water potential, percentage of dry matter and selective absorption to K+ and Na+ in oats. Syst Sci Compreh Stud Agric, 2006,22:105-108. |
[11] | Wang B, Zhang J C, Song F B, Zhao M, Han X Y . Physiological responses to saline-alkali in oats. J Soil Water Conserv, 2007,21:86-89. |
[12] | 白健慧 . 燕麦对盐碱胁迫的生理响应机制研究. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2016. |
Bai J H . Physiological Response Mechanism of Oats to Saline-Alkali Stress. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2016 (in Chinese with English abstract). | |
[13] | Murty A S, Misra P N, Haider M M . Effect of different salt concentrations on seed germination and seedling development in a few oat cultivars. Indian Agric Res J, 1984,18:129-132. |
[14] | 白宝璋, 史安国, 赵景阳 . 植物生理学. 北京: 北京农业出版社, 2001. |
Bai B Z, Shi A G, Zhao J Y . Plant Physiology. Beijing: Beijing Agricultural Press, 2001 (in Chinese). | |
[15] | 邹琦 . 植物生理学实验指导. 北京: 中国农业出版社, 2000. |
Zou Q. Laboratory Physiology Experiment Guide. Beijing: China Agriculture Press, 2000 (in Chinese). | |
[16] | Bradford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem, 1976,72:248-254. |
[17] | Tatusov R L, Fedorova N D, Jackson J D, Jacobs A R, Kiryutin B, Kiinin E V, Krylov D M, Mazumder R, Mekhedov S L, Nikolskaya A N, Rao B S, Smirnov S, Sverdlov A V, Vasudevan S, Wolf Y, Yin J, Natale D A . The COG data base: an updated version includes eukaryotes. BMC Bioinform, 2003,4:41. |
[18] | Flowers T J, Torke P F, Yeo A R . The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol, 1977,28:89-121. |
[19] | 高彩婷, 刘景辉, 张玉芹, 徐寿军, 张玉霞 . 短期盐胁迫下燕麦幼苗的生理响应. 草地学报, 2017,25:337-343. |
Gao C T, Liu J H, Zhang Y Q, Xu S J, Zhang Y X . Physiological response of oat seedlings under short-term salt stress. Acta Agrest Sin, 2017,25:337-343 (in Chinese with English abstract). | |
[20] | 杨舒贻, 陈晓阳, 惠文凯, 任颖, 马玲 . 逆境胁迫下植物抗氧化酶系统响应研究进展. 福建农林大学学报(自然科学版), 2016,45:481-489. |
Yang S Y, Chen X Y, Hui W K, Ren Y, Ma L . Research progress of plant antioxidant enzyme system response under stress. J Fujian Agric For Univ(Nat Sci Edn), 2016,45:481-489 (in Chinese with English abstract). | |
[21] | 周莹, 赵永娟, 黄丽瑾, 唐楠煜, 唐晓清, 王康才 . 荆芥幼苗对盐胁迫的生理响应. 核农学报, 2019,33:166-175. |
Zhou Y, Zhao Y J, Huang L J, Tang N Y, Tang X Q, Wang K C . Physiological response of Nepeta seedlings to salt stress. J Nucl Agric Sci, 2019,33:166-175 (in Chinese with English abstract). | |
[22] | 刘景辉, 胡跃高 . 燕麦抗逆性研究. 北京: 中国农业出版社, 2010. |
Liu J H, Hu Y G. Study on the Resistance of Oats. Beijing: China Agriculture Press, 2010 (in Chinese). | |
[23] | 董靖, 李红丽, 董智, 白文华 . H2S对NaCl胁迫下草木樨幼苗生理指标及抗氧化酶活性的影响. 草业科学, 2018,35:2430-2437. |
Dong J, Li H L, Dong Z, Bai W H . Effects of H2S on physiological indexes and antioxidant enzyme activities of alfalfa seedlings under NaCl stress. Pratac Sci, 2018,35:2430-2437 (in Chinese with English abstract). | |
[24] | Zhao Z, Liu J H, Jia R Z, Bao S, Hai X, Chen X J . Physiological and TMT-based proteomic analysis of oat early seedlings in response to alkali stress. J Proteom, 2019,193:10-26. |
[25] | Swindell W R, Huebner M, Weber A P . Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genom, 2007,8:125. |
[26] | Jarvis P . Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol, 2008,179:257-285. |
[27] | Schulze-Lefert P . Plant immunity: the origami of receptor activation. Curr Biol, 2004,14:22-24. |
[28] | Panaretou B, Zhai C . The heat shock proteins: their roles as multi-component machines for protein folding. Fungal Biol Rev, 2008,22:110-119. |
[29] | Hu W H, Hu G C, Han B . Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci, 2009,176:583-590. |
[30] | Cui Y C, Xu G Y, Wang M L, Yu Y, Li M J, Pedro S C, da Rocha F, Xia X J . Expression of OsMSR3 in Arabidopsis enhances tolerance to cadmium stress. Plant Cell Tissue Organ Cult, 2013,113:331-340. |
[31] | Hamilton E W, Heekathorn S A . Mitochondriala daptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol, 2001,126:1266-1274. |
[1] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[2] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[3] | 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. |
[4] | 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439. |
[5] | 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480. |
[6] | 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报, 2021, 47(10): 2001-2011. |
[7] | 韦还和,葛佳琳,张徐彬,孟天瑶,陆钰,李心月,陶源,丁恩浩,陈英龙,戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247. |
[8] | 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922. |
[9] | 李润枝, 靳晴, 李召虎, 王晔, 彭真, 段留生. 水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应[J]. 作物学报, 2020, 46(11): 1810-1816. |
[10] | 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516. |
[11] | 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364. |
[12] | 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028. |
[13] | 邹雪, 丁凡, 余金龙, 彭洁, 邓孟胜, 王宇, 刘丽芳, 余韩开宗, 陈年伟, 王西瑶. 挥发性抑芽物质对马铃薯块茎萌芽的影响及其作用机制[J]. 作物学报, 2019, 45(2): 235-247. |
[14] | 周萍萍,颜红海,彭远英. 基于高通量GBS-SNP标记的栽培燕麦六倍体起源研究[J]. 作物学报, 2019, 45(10): 1604-1612. |
[15] | 毛花英,刘峰,苏炜华,黄宁,凌辉,张旭,王文举,李聪娜,汤翰臣,苏亚春,阙友雄. 甘蔗磷脂酰肌醇转运蛋白基因ScSEC14响应干旱和盐胁迫[J]. 作物学报, 2018, 44(6): 824-835. |
|