欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (10): 1544-1553.doi: 10.3724/SP.J.1006.2019.93002

• 耕作栽培·生理生化 • 上一篇    下一篇

不同栽培管理条件下夏玉米产量与肥料利用效率的差异解析

王洪章,刘鹏(),贾绪存,李静,任昊,董树亭,张吉旺,赵斌   

  1. 山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018
  • 收稿日期:2019-01-22 接受日期:2019-05-12 出版日期:2019-10-12 网络出版日期:2019-09-10
  • 通讯作者: 刘鹏
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300106);国家自然科学基金项目(31771713);国家自然科学基金项目(31371576);山东省现代农业产业技术体系项目资助(SDAIT02-08)

Analysis of differences in summer maize yield and fertilizer use efficiency under different cultivation managements

WANG Hong-Zhang,LIU Peng(),JIA Xu-Cun,LI Jing,REN Hao,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin   

  1. College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
  • Received:2019-01-22 Accepted:2019-05-12 Published:2019-10-12 Published online:2019-09-10
  • Contact: Peng LIU
  • Supported by:
    This study was supported by the National Key R&D Program of China(2016YFD0300106);the National Natural Science Foundation of China(31771713);the National Natural Science Foundation of China(31371576);the Shandong Modern Agricultural Industry Technical System Project(SDAIT02-08)

摘要:

于2017—2018年在泰安、淄博和烟台, 根据生产调研和各地夏玉米高产经验, 在同一地块综合设置了超高产栽培、高产高效栽培和农户栽培3种栽培模式, 分别模拟超高产生产水平(SH)、高产高效生产水平(HH)和农户生产水平(FP) 3个层次。并分别设置不施氮(SHN0、HHN0、FPN0)、不施磷(SHP0、HHP0、FPP0)和不施钾(SHK0、HHK0、FPK0)的肥料空白处理。定量分析不同产量层次之间产量差及肥料利用效率差, 探究产量差和效率差的影响因素及缩差增效途径。结果显示, 当前山东省夏玉米SH、HH和FP的籽粒产量分别实现了光温潜力产量的68.13%、63.71%、53.22%。随着产量差距的增大, 肥料利用效率降低。FP的N、P、K肥料利用效率分别为4.23、5.83、4.94 kg kg -1, SH的分别为3.84、4.64、2.97 kg kg -1。通过优化栽培措施后, 高产高效管理模式能够较FP籽粒产量提升10.49%, N、P、K的肥料利用效率分别提高67.07%、101.35%、57.65%, 是实现产量与肥料利用效率协同提升的有效技术途径。对各产量水平进行产量性能分析发现, 随着产量水平的提高, 平均叶面积指数和单位面积穗数明显提高, 而穗粒数、平均净同化率和粒重则有所下降。随着产量水平的提高, 吐丝后干物质和N、P、K元素积累比例有增加的趋势。因此, 在保持现有功能性参数不降低情况下, 优化结构性参数是当前产量与资源利用效率协同提升的有效措施, 今后高产高效应更加注重生育后期群体结构性能的优化。

关键词: 夏玉米, 产量差, 肥料利用

Abstract:

Our study was conducted in Tai’an, Zibo, and Yantai city from 2017 to 2018. According to the production research and experience of high-yield summer maize, three cultivation modes simulating super-high production level (SH), high production and high-efficiency production level (HH), and farmer production level (FP) were comprehensively set up in the same plot. The fertilizer blanks were applied with no nitrogen (SHN0, HHN0, FPN0), no phosphorus (SHP0, HHP0, FPP0), and no potassium (SHK0, HHK0, FPK0). Quantitative analysis of the yield gap and fertilizer utilization efficiency gap under different yield levels was carried out to explore the factors affecting yield gap and efficiency gap, and the way to reduce the gap and improve the efficiency. The grain yields of SH, HH, and FP of summer maize in Shandong province were realized 68.13%, 63.71%, and 53.22% of the potential yield of light and temperature. The fertilizer utilization efficiency decreased with the enlarged yield gap. The agronomic utilization rates of N, P and K fertilizers in FP were 4.23, 5.83, and 4.94 kg kg -1, respectively. The N, P, and K fertilizer utilization efficiencies of FP were 4.23, 5.83, and 4.94 kg kg -1, and those of SH were 3.84, 4.64, and 2.97 kg kg -1, respectively. After optimizing the cultivation measures, the high-yield and high-efficiency management mode increased the fertilizer utilization efficiency of N, P, and K by 67.07%, 101.35%, and 57.65%, respectively, and the output by 10.49%, as compared with FP. It is an effective technical way to achieve the synergistic improvement of yield and fertilizer use efficiency. The yield performance analysis of summer maize yields showed that with the increase of yield level, the mean leaf area index and the number of panicles per unit area increased significantly, while the number of kernels per panicle, average net assimilation rate and grain weight decreased. At the same time, with the increase of yield level, the accumulation ratio of biomass and N, P, and K uptake decreased in pre-silking stage, and increased in post-silking stage. Therefore, under the condition of keeping functional parameters unchanged on the existing basis, optimizing structural parameters is an effective measure for current yield and efficiency increase, and with the increase of yield, more attention should be paid to structural optimization in post-silking stage.

Key words: summer maize, yield gap, fertilizer utilization

表1

试验期间生育进程及生育期气象因子"

年份
Year
地点
Site
播种日期
Sowing date
(month/day)
收获日期
Harvest date
(month/day)
生育期天数
Total days
(d)
≥10℃有效积温
Accumulated
temperature
(℃)
光合有效辐射量
Radiation
(MJ m-2)
降雨量
Rainfall
(mm)
2017 泰安Tai’an 6/12 10/06 116 1788.8 1102.8 427.5
淄博Zibo 6/12 9/29 109 1778.9 991.5 244.4
烟台Yantai 6/20 10/06 108 1722.5 1067.4 420.8
2018 泰安Tai’an 6/12 10/06 116 1833.3 1175.8 515.4
淄博Zibo 6/13 10/01 110 1875.6 1165.2 632.8
烟台Yantai 6/20 10/08 110 1742.5 1177.5 449.1

表2

各处理的种植密度及肥料运筹"

处理
Treatment
种植密度
Plant
density
(plant hm-2)
目标产量
Target yield
(kg hm-2)
肥料种类
Fertilizer
用量
Rate
(kg hm-2)
比例 Percentage
播种期
Sowing
大喇叭口期
Bell stage
开花期
Flowering stage
乳熟期
Milking stage
SH 82500 18000 有机肥OF 7500 100%
N 540 30%PU+10%U 30%U 20%U 10%U
P2O5 180 100%
K2O 360 75% 25%
HH 82500 15000 有机肥OF 7500 100%
N 375 30%PU+10%U 30%U 20%U 10%U
P2O5 150 100%
K2O 300 75% 25%
FP 67500 N 208.5 100%
P2O5 120 100%
K2O 112.5 100%

表3

不同产量层次夏玉米产量及各级产量差"

年份
Year
地点
Site
产量 Yield (t hm-2) 产量差 Yield gap (%)
YRT YSH YHH YFP YGI YGII YGIII
2017 泰安Tai’an 17.71 12.30 a 11.30 b 9.97 c 30.55 36.19 43.70
淄博Zibo 16.78 12.07 a 11.42 b 9.80 c 28.07 31.94 41.60
烟台Yantai 15.84 11.99 a 11.91 a 9.85 b 24.31 24.81 37.82
2018 泰安Tai’an 19.06 12.53 a 11.33 b 8.75 c 34.26 40.56 54.09
淄博Zibo 20.25 12.34 a 11.29 b 9.41 c 39.06 44.25 53.53
烟台Yantai 19.09 12.41 a 11.46 b 9.56 c 34.99 39.97 49.92
平均Average 18.12 12.27 a 11.45 b 9.56 c 31.87 36.29 46.78

图1

不同产量层次夏玉米的地上部生物量的差异 SH: 超高产水平; HH: 高产高效水平; FP: 农户生产水平。"

图2

不同产量层次夏玉米吐丝前、吐丝后干物质积累占比与产量之间的关系 缩写同图1。"

表4

不同产量层次夏玉米产量性能方程参数的差异"

年份
Year
产量水平
Yield level
结构性参数Structural parameter 功能性参数Functional parameter
MLAI EN
(×104 hm-2)
GN MNAR
(g m-2 d-1)
HI GW
(g)
2017 SH 3.69 a 7.93 a 501.30 b 6.69 b 0.51 a 370.16 b
HH 3.51 b 7.61 a 502.97 b 6.77 b 0.51 a 366.66 b
FP 3.00 c 6.76 b 557.40 a 8.38 a 0.50 a 383.32 a
2018 SH 3.47 a 7.84 a 524.40 b 7.23 b 0.53 a 371.36 a
HH 3.28 b 7.46 a 506.00 c 6.92 c 0.53 a 370.52 a
FP 3.01 c 6.44 b 563.47 a 7.49 a 0.53 a 379.31 a
平均
Average
SH 3.45 7.93 516.20 7.85 0.51 377.38
HH 3.23 7.57 507.50 7.72 0.52 377.76
FP 2.94 6.64 562.57 8.88 0.50 383.86

图3

不同产量层次夏玉米地上部N、P、K元素积累量的差异 图中不同小写字母表示处理间差异达0.05显著水平。缩写同图1。"

图4

不同产量层次夏玉米肥料利用效率的差异 图中不同小写字母表示处理间差异达0.05显著水平。缩写同图1。"

图5

不同产量层次夏玉米产量与肥料利用效率的关系 缩写同图1。"

[1] Cassman K G . Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci USA, 1999,96:5952-5959.
[2] 王庆成, 柴兰高, 李宗新, 刘霞 . 山东省玉米的生产现状与发展策略. 玉米科学, 2006,14(5):159-162.
Wang Q C, Chai L G, Li Z X, Liu X . Current status and development strategies of maize production in Shandong province. J Maize Sci, 2006,14(5):159-162 (in Chinese with English abstract).
[3] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45:915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F . Current status and improvement of fertilizer utilization rate of main grain crops in China. Acta Pedol Sin, 2008,45:915-924 (in Chinese with English abstract).
[4] Yu Y, Huang Y, Zhang W . Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management. Field Crops Res, 2012,136:65-75.
[5] Prem S, B, Christian D, Latha N, Amit R, Rudy R . Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol Fert Soils, 2015,51:897-911.
[6] 刘伟, 吕鹏, 苏凯, 杨今胜, 张吉旺, 董树亭, 刘鹏, 孙庆泉 . 种植密度对夏玉米产量和源库特性的影响. 应用生态学报, 2010,21:1737-1743.
Liu W, Lyu P, Su K, Yang J S, Zhang J W, Dong S T, Liu P, Sun Q Q . Effects of planting density on the grain yield and source-sink characteristics of summer maize. Chin J Appl Ecol, 2010,21:1737-1743 (in Chinese with English abstract).
[7] 陈国平, 杨国航, 赵明, 王立春, 王友德, 薛吉全, 高聚林, 李登海, 董树亭, 李潮海, 宋慧欣, 赵久然 . 玉米小面积超高产创建及配套栽培技术研究. 玉米科学, 2008,16(4):1-4.
Chen G P, Yang G H, Zhao M, Wang L C, Wang Y D, Xue J Q, Gao J L, Li D H, Dong S T, Li C H, Song H X, Zhao J R . Studies on maize small area super-high yield trails and cultivation technique. J Maize Sci, 2008,16(4):1-4 (in Chinese with English abstract).
[8] 王启现, 王璞, 申丽霞, 王秀玲, 张红芳, 翟志席 . 施氮时期对玉米土壤硝态氮含量变化及氮盈亏的影响. 生态学报, 2004,24:1582-1588.
Wang Q X, Wang P, Shen L X, Wang X L, Zhang H F, Zhai Z X . Effect of nitrogen application time on dynamics of nitrate content and apparent nitrogen budget in the soil of summer maize fields. Acta Ecol Sin, 2004,24:1582-1588 (in Chinese with English abstract).
[9] 吴永成, 周顺利, 王志敏, 罗延庆 . 华北地区夏玉米土壤硝态氮的时空动态与残留. 生态学报, 2005,25:1620-1625.
Wu Y C, Zhou S L, Wang Z M, Luo Y Q . Dyanmics and residue of soil nitrate in summer maize field of North China. Acta Ecol Sin, 2005,25:1620-1625 (in Chinese with English abstract).
[10] Fang Q X, Yu Q, Wang E L, Chen Y H, Zhang G L, Wang J, Li L H . Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat- maize double cropping system in the North China Plain. Plant Soil, 2006,284:335-350.
[11] Ju X T, Kou C L, Zhang F S, Christie P . Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environ Pollut, 2006,143:117-125.
[12] 赵荣芳, 陈新平, 张福锁 . 华北地区冬小麦-夏玉米轮作体系的氮素循环与平衡. 土壤学报, 2009,46:684-697.
Zhao R F, Chen X P, Zhang F S . Nitrogen cycling and balance in winter-wheat-summer-maize rotation system in Northern China Plain. Acta Pedol Sin, 2009,46:684-697 (in Chinese).
[13] Bai H Z, Tao F L . Sustainable intensification options to improve yield potential and eco-efficiency for rice-wheat rotation system in China. Field Crops Res, 2017,211:89-105.
[14] Cui Z L, Wang G L, Yue S C, Wu L, Zhang W F, Zhang F S, Chen X P . Closing the N-use efficiency gap to achieve food and environmental security. Environ Sci Technol, 2014,48:5780.
[15] Liu Z J, Yang X G, Lin X M, Hubbard K G, Lyu S, Wang J . Maize yield gaps caused by non-controllable, agronomic, and socioeconomic factors in a changing climate of northeast China. Sci Total Environ, 2016,541:756-764.
[16] Zhou B Y, Sun X F, Ding Z S, Ma W, Zhao M . Multisplit nitrogen application via drip irrigation improves maize grain yield and nitrogen use efficiency. Crop Sci, 2017,57:1687-1703.
[17] Jin L B, Cui H Y, Li B, Zhang J W, Dong S T, Liu P . Effects of integrated agronomic management practices on yield and nitrogen efficiency of summer maize in North China. Field Crops Res, 2012,134:30-35.
[18] 赖荣生, 余海龙, 黄菊莹 . 作物气候生产潜力计算模型研究述评. 江苏农业科学, 2014,42(5):11-14.
Lai R S, Yu H L, Huang J Y . Review on the calculation model of crop climate production potential. Jiangsu Agric Sci, 2014,42(5):11-14 (in Chinese).
[19] 刘江, 潘宇弘, 王平华, 李一鸣, 金磊, 温永菁, 高淑新 . 1966-2015年辽宁省玉米气候生产潜力的时空特征. 生态学杂志, 2018,37:3396-3406.
Liu J, Pan Y H, Wang P H, Li Y M, Jin L, Wen Y J, Gao S X . Spatial and temporal characteristics of climatic potential productivity of maize in Liaoning Province from 1966 to 2015. Chin J Ecol, 2018,37:3396-3406 (in Chinese with English abstract).
[20] 张宾, 赵明, 董志强, 陈传永, 孙锐 . 作物产量“三合结构”定量表达及高产分析. 作物学报, 2007,33:1674-1681.
Zhang B, Zhao M, Dong Z Q, Chen C Y, Sun R . “Three combination structure” quantitative expression and high yield analysis in crops. Acta Agron Sin, 2007,33:1674-1681 (in Chinese with English abstract).
[21] 赵明, 李建国, 张宾, 董志强, 王美云 . 论作物高产挖潜的补偿机制. 作物学报, 2006,32:1566-1573.
Zhao M, Li J G, Zhang B, Dong Z Q, Wang M Y . The compensatory mechanism in exploring crop production potential. Acta Agron Sin, 2006,32:1566-1573 (in Chinese with English abstract).
[22] Godfray H C, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C . Food security: the challenge of feeding 9 billion people. Science, 2010,327(5967):812.
[23] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明 . 中国玉米栽培研究进展与展望. 中国农业科学, 2017,50:1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M . Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017,50:1941-1959 (in Chinese with English abstract).
[24] Cassman K G, Dobermann A, Walters D T, Yang H S . Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Environ Resour, 2003,28:315-358.
[25] Lobell D B, Cassman K G, Field C B . Crop yield gaps: their importance, magnitudes, and causes. Annu Rev Environ Resour, 2009,34:179-204.
[26] 陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然 . 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012,38:80-85.
Chen G P, Gao J L, Zhao M, Dong S T, Li S K, Yang Q F, Liu Y H, Wang L C, Xue J Q, Liu J G, Li C H, Wang Y H, Wang Y D, Song H X, Zhao J R . Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years. Acta Agron Sin, 2012,38:80-85 (in Chinese with English abstract).
[27] Tilman D, Balzer C, Hill J, Befort B L . Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011,108:20260.
[28] Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S . Agricultural sustainability and intensive production practices. Nature, 2002,418:671-677.
[29] Zhang W, Cao G, Li X, Zhang H Y, Wang C, Liu Q Q, Chen X P, Cui Z L, Shen J B, Jiang R F, Mi G H, Miao Y X, Zhang F S, Dou Z X . Closing yield gaps in China by empowering smallholder farmers. Nature, 2016,537:671.
[30] Shen J B, Cui Z L, Miao Y X, Mi G H, Zhang H Y, Fan M S, Zhang C C, Jiang R F, Zhang W F, Li H G, Chen X P, Li X L, Zhang F S . Transforming agriculture in China: From solely high yield to both high yield and high resource use efficiency. Global Food Security, 2013,2:1-8.
[31] Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, Sun Y X, Peng X L, Zhang J W, He M R, Zhu Y J, Xue J Q, Wang G L, Wu L, An N, Wu L Q, Ma L, Zhang W F, Zhang F S . Producing more grain with lower environmental costs. Nature, 2014,514:486-489.
[32] 孙宏勇, 张喜英, 陈素英, 王彦梅, 邵立威, 高丽娜 . 气象因子变化对华北平原夏玉米产量的影响. 中国农业气象, 2009,30:215-218.
Sun H Y, Zhang X Y, Chen S Y, Wang Y M, Shao L W, Gao L N . Effect of meteorological factors on grain yield of summer maize in the North China Plain. Chin J Agrometeorol, 2009,30:215-218 (in Chinese with English abstract).
[33] 刘淑云, 董树亭, 胡昌浩, 白萍, 吕新 . 玉米产量和品质与生态环境的关系. 作物学报, 2005,31:571-576.
Liu S Y, Dong S T, Hu C H, Bai P, Lyu X . Relationship between ecological environment and maize yield and quality. Acta Agron Sin, 2005,31:571-576 (in Chinese with English abstract).
[34] Mueller N D, Gerber J S, Johnston M, Ray D K, Ramankutty N, Foley J A . Closing yield gaps through nutrient and water management. Nature, 2013,494:390-390.
[35] Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber G S, Johnston M, Mueller N D, O’Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks D P M. Solutions for a cultivated planet. Nature, 2011,478:337-342.
[36] 李少昆, 王克如, 谢瑞芝, 侯鹏, 明博, 杨小霞, 韩冬生, 王玉华 . 实施密植高产机械化生产实现玉米高产高效协同. 作物杂志, 2016, ( 4):1-6.
Li S K, Wang K R, Xie R Z, Hou P, Ming B, Yang X X, Han D S, Wang Y H . Implement dense planting and high-yield mechanized production to achieve high yield and high efficiency of corn. Crops, 2016, ( 4):1-6 (in Chinese with English abstract).
[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[3] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[4] 杜祥备, 习敏, 孔令聪, 吴文革, 陈金华, 许有尊, 周永进. 江淮地区稻-麦周年产量差及其与资源利用关系[J]. 作物学报, 2021, 47(2): 351-358.
[5] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[6] 吕伟生, 肖富良, 张绍文, 郑伟, 黄天宝, 肖小军, 李亚贞, 吴艳, 韩德鹏, 肖国滨, 张学昆. 种肥播施方式对红壤旱地油菜产量及肥料利用率的影响[J]. 作物学报, 2020, 46(11): 1790-1800.
[7] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[8] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[9] 万泽花,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化[J]. 作物学报, 2019, 45(9): 1446-1453.
[10] 周宝元,马玮,孙雪芳,丁在松,李从锋,赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究[J]. 作物学报, 2019, 45(4): 589-600.
[11] 高超,李学文,孙艳伟,周婷,罗纲,陈财. 淮河流域夏玉米生育阶段需水量及农业干旱时空特征[J]. 作物学报, 2019, 45(2): 297-309.
[12] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝. 土壤深松下磷肥施用深度对夏玉米根系分布及磷素吸收利用效率的影响[J]. 作物学报, 2019, 45(10): 1565-1575.
[13] 李荣发,刘鹏,杨清龙,任昊,董树亭,张吉旺,赵斌. 玉米密植群体下部叶片衰老对植株碳氮分配与产量形成的影响[J]. 作物学报, 2018, 44(7): 1032-1042.
[14] 胡旦旦,张吉旺,刘鹏,赵斌,董树亭. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响[J]. 作物学报, 2018, 44(6): 920-930.
[15] 高尚,明博,李璐璐,谢瑞芝,薛军,侯鹏,王克如,李少昆. 黄淮海夏玉米籽粒脱水与气象因子的关系[J]. 作物学报, 2018, 44(12): 1755-1763.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!