欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (02): 166-178.doi: 10.3724/SP.J.1006.2020.84086

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗热带种金属硫蛋白家族基因的克隆及响应重金属胁迫的表达分析

高世武1,傅志伟1,陈云1,林兆里2,许莉萍1,郭晋隆1,*()   

  1. 1 福建农林大学 / 农业农村部福建甘蔗生物学与遗传育种重点实验室, 福建福州 350002
    2 福建农林大学 / 农业农村部甘蔗及制品质量监督检验测试中心, 福建福州 350002
  • 收稿日期:2019-06-10 接受日期:2019-09-26 出版日期:2020-02-12 网络出版日期:2019-10-14
  • 通讯作者: 郭晋隆
  • 作者简介:E-mail: gaoshiwu2008@126.com
  • 基金资助:
    本研究由国家自然科学基金项目(31871690);国家留学基金委留学基金项目资助(20163035)

Cloning and expression analysis of metallothionein family genes in response to heavy metal stress in sugarcane (Saccharum officinarum L.)

GAO Shi-Wu1,FU Zhi-Wei1,CHEN Yun1,LIN Zhao-Li2,XU Li-Ping1,GUO Jin-Long1,*()   

  1. 1 Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture and Rural Affairs / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2 Sugarcane and Products Quality Supervisory Inspection and Test Center of Ministry of Agriculture and Rural Affairs / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2019-06-10 Accepted:2019-09-26 Published:2020-02-12 Published online:2019-10-14
  • Contact: Jin-Long GUO
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31871690);the Foundation for China Scholarship Council(20163035)

摘要:

金属硫蛋白是一类富含巯基的低分子量蛋白, 在植物的重金属解毒及细胞氧化还原调控等方面起重要的作用。本研究以甘蔗热带种Badila组培苗为材料, 分别测定了其在CdCl2、ZnSO4和CuCl2水溶液培养条件下地上部和地下部的重金属含量, 结果显示其对上述3种重金属有较强的耐受与富集能力。继而克隆了ScMT1 (登录号为KJ504373)、ScMT2-1-5 (登录号为MH191346)和ScMT3 (登录号为KJ5043704) 3个金属硫蛋白家族基因, 它们分别属于植物MT亚家族中的MT1、MT2和MT3型基因。ScMT1含有1个内含子和2个外显子, 开放阅读框(Open Reading Frame, ORF)长228 bp, 编码75个氨基酸; ScMT2-1-5含有2个内含子和3个外显子, ORF长246 bp, 编码81个氨基酸; ScMT3含有1个内含子和2个外显子, ORF长198 bp, 编码65个氨基酸。RT-qPCR显示, Cd 2+胁迫下, 在甘蔗地上部和地下部, ScMT2-1-5均连续显著上调表达, 而ScMT1的上调应答出现延迟。ScMT3在地上部的上调应答出现延迟, 在地下部呈“扬-抑”趋势, 提示甘蔗响应Cd 2+胁迫过程中ScMT2-1-5起更积极的作用, ScMT1参与胁迫后期的分子响应, 而ScMT3不起主导作用。Cu 2+胁迫下, 地上部ScMT1连续显著上调表达, ScMT2-1-5和ScMT3呈总体上调的表达趋势; 地下部, ScMT1和ScMT2-1-5的上调表答均出现延迟, 仅在胁迫后期显著上调表达, 而ScMT3仅在胁迫前期显著上调表达。该结果提示了ScMT1、ScMT2-1-5和ScMT3在Cu 2+胁迫响应过程中的协作关系, 三者共同参与了地上部的胁迫响应, 其中ScMT1起更积极的作用; 此外三者还先后参与了地下部对Cu 2+胁迫的分子响应。Zn 2+胁迫下, ScMT1和ScMT3分别仅在地上部和地下部显著上调表达; ScMT2-1-5在地上部和地下部均呈“扬-抑”的应答趋势; 提示了在甘蔗响应Cd 2+胁迫应答过程中ScMT1和ScMT3分别在地上部和地下部起主要作用, ScMT2-1-5参与了胁迫前期的分子响应。ScMT1、ScMT2-1-5和ScMT3在甘蔗不同组织中及在重金属(Cd 2+、Zn 2+或Cu 2+)不同累积水平下呈现出相似或互补的应答特性, 提示上述甘蔗MT家族不同成员在重金属解毒及细胞氧化还原调控等方面产生了功能分化, 且三者在应对过量Cd 2+、Zn 2+或Cu 2+对甘蔗组织造成伤害的过程中存在时空上的协同作用。该研究为深入理解多倍体植物甘蔗中MT家族各成员基因在重金属耐受过程中的协同作用机制奠定了基础。

关键词: 甘蔗, 金属硫蛋白, 重金属, 实时荧光定量PCR

Abstract:

Metallothioneins (MTs) are cysteine-rich, low-molecular-weight proteins. Plant MTs play important roles in detoxi?cation and cellular redox regulation. In this study, hydroponic experiments of sugarcane (Saccharum officinarum L. cv. Badila) were carried out to study the effects of CdCl2, ZnSO4, and CuCl2 treatments on plantlet growth. And then three kinds of heavy metal content in both shoots and roots of sugarcane were detected, showing an enrichment and tolerance ability to Cd 2+, Zn 2+, and Cu 2+ in Badila seedlings. Three metallothionein genes, termed as ScMT1 (accession number: KJ504373), ScMT2-1-5 (accession number: MH191346), and ScMT3 (accession number: KJ5043704), were isolated from Badila. ScMT1 contained an open reading frame (ORF) of 228 bp encoding 75 amino acids residues. The first (52 bp) and second (176 bp) extrons of ScMT1 were separated by an intron (283 bp). ScMT2-1-5 contained an ORF of 246 bp encoding 81 amino acids residues. The first (64 bp), second (87 bp), and third (101 bp) extrons of ScMT2-1-5 were separated by two introns (483 bp and 853 bp). ScMT3 contained an ORF of 198 bp encoding 65 amino acids residues. The first (50 bp) and second (148 bp) extrons of ScMT3 were separated by an intron (259 bp). The deduce protein ScMT1, ScMT2-1-5, and ScMT3 were categorized into the subfamily of plant type1, type2, and type3 MTs, respectively. The expression profiles of the three genes under different heavy-metal stresses were investigated by real-time quantitative PCR (qRT-PCR) analysis. When treated with Cd 2+, the expression of ScMT2-1-5 was continuously and significantly up-regulated in both shoots and roots, while that of ScMT1 showed a delayed up-regulation pattern. The expression of ScMT3 showed a delayed up-regulation pattern in shoots and a trend of first raising and then suppressing in roots. The results suggested that ScMT2-1-5 might play a more active role in response to Cd 2+in sugarcane while ScMT3 might not, and ScMT1 is involved in the molecular responses of Cd 2+ stress at the later stage. When treated with Cu 2+, the expression of ScMT1 was continuously and significantly up-regulated, and that of ScMT2-1-5 and ScMT3 general up-regulated in shoots. As in the roots, the expression of both ScMT1 and ScMT2-1-5 showed a delayed up-regulation pattern which was significantly up-regulated at the later stage, while that of ScMT3 significantly up-regulated at the early stage. It revealed that ScMT1 cooperated with ScMT2-1-5 and ScMT3 is involved in the positive response to Cu 2+ stress in roots, and might play a more positive role than ScMT2-1-5 and ScMT3, and the three genes are successively involved in the molecular responses of Cu 2+ stress in roots. When treated with Zn 2+, the expression of ScMT1 and ScMT3 increased only in shoots and roots, respectively. The expression of ScMT2-1-5 was up-regulated at the early stage and then suppressed in both shoots and roots. It suggests that ScMT1 and ScMT3 mainly function in shoots and roots, respectively, when exposed to Zn 2+ stress. ScMT2-1-5 was involved in the molecular responses of Cd 2+ stress at the early stage. ScMT1, ScMT2-1-5, and ScMT3 showed similar or complementary expression patterns in different tissues of sugarcane when exposed to heavy metals, which revealed the functional diversity of sugarcane MTs in detoxi?cation and cellular redox regulation, and their spatiotemporal coordination in mitigating or even preventing tissue injury caused by excessive heavy metals. The results provide a basic information for further research on mechanisms in the synergistic enhancement of tolerance to heavy metals for MTs family genes in the highly polyploid sugarcane.

Key words: sugarcane (Saccharum officinarum L.), metallothionein, heavy metal, real-time qPCR

表1

甘蔗金属硫蛋白基因的克隆引物"

基因
Gene
上游引物
Forward primer (5°-3°)
下游引物
Reverse primer (5°-3°)
ScMT1 TGTAACACGCCCTTTGGTAGAT TGTCCTTATTGTTCAACCACCAG
ScMT2-1-5 CGAGGAGAGGAAGAGGACGACT TTATTCGTTCCCATCAGTACCA
ScMT3 AAGAAGGCCTTGCGCAACAAA ACGTACCGCGTCAGGTCCTCGT

表2

检测甘蔗金属硫蛋白家族基因表达的荧光定量PCR引物"

基因
Gene
上游引物
Forward primer (5°-3°)
下游引物
Reverse primer (5°-3°)
ScMT1 TGTAACACGCCCTTTGGTAGAT CTCCTCCAGGTCAGGGTACTTC
ScMT2-1-5 GAGGAAGAGGACGACTGCGAGG TCATCGCCAC CTCCTCACTT
ScMT3 GCTTCCAGCATGTCGGGCAC ACGGTCACCTCCTCCTCAACGA
GAPDH CACGGCCACTGGAAGCA TCCTCAGGGTTCCTGATGCC

图1

不同重金属胁迫48 h时甘蔗幼苗表型"

图2

Cd2+、Zn2+、Cu2+胁迫下甘蔗幼苗地上部、地下部重金属积累量 图柱上不同的小写字母表示5%水平下差异的显著性。"

图3

甘蔗金属硫蛋白基因ScMTs的PCR产物凝胶电泳图"

图4

ScMTs cDNA序列及其推导的氨基酸序列 A: ScMT1; B: ScMT2-1-5; C: ScMT3。*: 终止密码子; C显示的是Cys富集结构域中的半胱氨酸残基。"

图5

甘蔗、水稻和拟南芥MTs的系统进化树及外显子/内含子结构示意图 方块和条线分别代表外显子和内含子。"

图6

甘蔗ScMT1基因在不同重金属胁迫下的表达模式 A、C和E分别为ScMT1在CdCl2、ZnSO4和CuCl2处理下的表达模式。B、D和F分别为ScMT1在CdCl2、ZnSO4和CuCl2处理下和相应对照中相对表达量的比值。误差线为每组处理的标准误(n = 3)。图柱上不同的小写字母表示5%水平下差异的显著性。"

图7

甘蔗ScMT2-1-5基因在不同重金属胁迫下的表达模式 A、C和E分别为ScMT2-1-5在CdCl2、ZnSO4和CuCl2处理下的表达模式。B、D和F分别为ScMT2-1-5在CdCl2、ZnSO4和CuCl2处理下和相应对照中相对表达量的比值。误差线为每组处理的标准误(n = 3)。图柱上不同的小写字母表示5%水平下差异的显著性。"

图8

甘蔗ScMT3基因在不同重金属胁迫下的表达模式 A、C和E分别为ScMT3在CdCl2、ZnSO4和CuCl2处理下的表达模式。B、D和F分别为ScMT3在CdCl2、ZnSO4和CuCl2处理下和相应对照中相对表达量的比值。误差线为每组处理的标准误(n = 3)。图柱上不同的小写字母表示5%水平下差异的显著性。"

[1] Cobbett C, Goldsbrough P . Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol, 2002,53:159-182.
doi: 10.1146/annurev.arplant.53.100301.135154 pmid: 12221971
[2] 常团结, 朱祯 . 植物金属硫蛋白研究进展(一) ——植物MT的分类、特征及其基因结构. 生物技术通报, 2002, ( 3):5-10.
Chang T J, Zhu Z . Study advances of plant metallothionein ——classification, characteristics and gene structure. Biotechnol Bull, 2002, ( 3):5-10 (in Chinese with English abstract).
[3] 全先庆, 张洪涛, 单雷, 毕玉平 . 植物金属硫蛋白及其重金属解毒机制研究进展. 遗传, 2006,28:375-382.
Quan X Q, Zhang H T, Shan L, Bi Y P . Advances in plant metallothionein and its heavy metal detoxification mechanisms. Hereditas (Beijing), 2006,28:375-382 (in Chinese with English abstract).
[4] Ziller A, Yadav R K, Capdevila M, Reddy M S, Vallon L, Marmeisse R, Atrian S, Palacios Ò, Fraissinet-Tachet L . Metagenomics analysis reveals a new metallothionein family: Sequence and metal-binding features of new environmental cysteine-rich proteins. J Inorg Biochem, 2017,167:1-11.
doi: 10.1016/j.jinorgbio.2016.11.017 pmid: 27886631
[5] Akashi K, Nishimura N, Ishida Y, Yokota A . Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem Biophys Res Commun, 2004,323:72-78.
doi: 10.1016/j.bbrc.2004.08.056 pmid: 15351703
[6] Wong H L, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K . Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol, 2004,135:1447-1456.
doi: 10.1104/pp.103.036384 pmid: 15220467
[7] Haq F, Mahoney M, Koropatnick J . Signaling events for metallothionein induction. Mutat Res, 2003,533:211-226.
doi: 10.1016/j.mrfmmm.2003.07.014 pmid: 14643422
[8] Fabisiak J P, Borisenko G G, Liu S X, Tyurin V A, Pitt B R, Kagan V E . Redox sensor function of metallothioneins. Methods Enzymol, 2001,353:268-281.
doi: 10.1016/s0076-6879(02)53055-x pmid: 12078502
[9] Vašák M, Hasler D W . Metallothioneins: new functional and structural insights. Curr Opin Chem Biol, 2000,4:177-183.
doi: 10.1016/s1367-5931(00)00082-x pmid: 10742189
[10] Freisinger E . Structural features specific to plant metallothioneins. J Biol Inorg Chem, 2011,16:1035-1045.
doi: 10.1007/s00775-011-0801-z pmid: 21688177
[11] Grennan A K . Metallothioneins, a diverse protein family. Plant Physiol, 2011,155:1750-1751.
doi: 10.1104/pp.111.900407 pmid: 21459979
[12] Leszczyszyn O I, Imam H T, Blindauer C A . Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics, 2013,5:1146-1169.
doi: 10.1039/c3mt00072a
[13] Schiller M, Hegelund J N, Pedas P, Kichey T, Laursen K H, Husted S, Schjoerring J K . Barley metallothioneins differ in ontogenetic pattern and response to metals. Plant Cell Environ, 2014,37:353-367.
doi: 10.1111/pce.12158
[14] Kumar G, Kushwaha H R, Panjabi-Sabharwal V, Kumari S, Joshi R, Karan R, Mittal S, Pareek S L, Pareek A . Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biol, 2012,12:107.
doi: 10.1186/1471-2229-12-107 pmid: 22780875
[15] Sereno M L, Almeida R S, Nishimura D S, Figueira A . Response of sugarcane to increasing concentrations of copper and cadmium and expression of metallothionein genes. J Plant Physiol, 2007,164:1499-1515.
doi: 10.1016/j.jplph.2006.09.007 pmid: 17175063
[16] Figueira A, Kido E A, Almeida R S . Identifying sugarcane expressed sequences associated with nutrient transporters and peptide metal chelators. Genet Mol Biol, 2001,24:207-220.
doi: 10.1590/S1415-47572001000100028
[17] Guo J, Xu L, Su Y, Wang H, Gao S, Xu J, Que Y . ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. Biomed Res Int, 2013. doi: 10.1155/2013/904769.
doi: 10.1155/2019/3401505 pmid: 31886774
[18] 陈云, 王竹青, 傅志伟, 杨玉婷, 郭晋隆, 苏亚春, 许莉萍 . 甘蔗金属硫蛋白基因(ScMT2-1-4)的克隆及表达分析. 基因组学与应用生物学, 2015,34:357-364.
Chen Y, Wang Z Q, Fu Z W, Yang Y T, Guo J L, Su Y C, Xu L P . Cloning and expression analysis of metallothionein gene ScMT2-1-4 in Sugarcane. Genom Appl Biol, 2015,34:357-364 (in Chinese with English abstract).
[19] Verma A K, Agarwal A K, Dubey R S, Solomon S, Singh S B . Sugar partitioning in sprouting lateral bud and shoot development of sugarcane. Plant Physiol Biochem, 2013,62:111-115.
doi: 10.1016/j.plaphy.2012.10.021 pmid: 23208305
[20] D’hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann J C . Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet, 1996,250:405-413.
doi: 10.1007/bf02174028 pmid: 8602157
[21] Edmé S J, Comstock J C, Miller J D, Tai P Y P . Determination of DNA content and genome size in sugarcane. J Am Soc Sugar Cane Technol, 2005,25:1-16.
doi: 10.1038/s41467-018-05051-5 pmid: 29980662
[22] Zhang J, Nagai C, Yu Q, Pan Y B, Ayala-Silva T, Schnell R J, Comstock J C, Arumuganathan A K, Ming R . Genome size variation in threeSaccharum species. Euphytica, 2012,185:511-519.
doi: 10.1007/s10681-012-0664-6
[23] Iskandar H M, Simpson R S, Casu R E, Bonnett G D, Maclean D J, Manners J M . Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Rep, 2004,22:325-337.
doi: 10.1007/BF02772676
[24] Livak, K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[25] 夏会龙, 程文伟, 池小雅 . 镉胁迫对甘蔗生长及生理性状的影响. 中国土壤与肥料, 2009, ( 1):42-45.
Xia H L, Cheng W E, Chi X Y . Effects of Cd stress on the growth and physiological properties of sugarcane. Soil Fert Sci China, 2009, ( 1):42-45 (in Chinese with English abstract).
[26] 魏树和, 周启星, 王新 . 超积累植物龙葵及其对镉的富集特征. 环境科学, 2005,26(3):167-171.
Wei S F, Zhou Q X, Wang X . Cadmium-hyperaccumulator Solanum nigrum L. and its accumulating characteristics. Environ Sci, 2005,26(3):167-171 (in Chinese with English abstract).
[27] 姚诗音, 刘杰, 王怡璇, 朱园芳, 丰顺 . 青葙对镉的超富集特征及累积动态研究. 农业环境科学学报, 2017,36:1470-1476.
Yao S Y, Liu J, Wang Y X, Zhu Y F, Feng S . Cd hyperaccumulation and accumulative kinetics ofCelosia argentea Linn. for phytoremediation of Cd-contaminated soil. J Agro-Environt Sci, 2017,36:1470-1476 (in Chinese with English abstract).
[28] Guo W J, Meetam M, Goldsbrough P B . Examining the specific contributions of individualArabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol, 2008,146:1697-1706.
doi: 10.1104/pp.108.115782 pmid: 18287486
[29] Guo W J Bundithya W, Goldsbrough P B . Characterization of theArabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol, 2003,159:369-381.
doi: 10.1046/j.1469-8137.2003.00813.x
[30] Zimeri A M, Dhankher O P, McCaig B, Meagher R B . The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Mol Biol, 2005,58:839-855.
doi: 10.1007/s11103-005-8268-3
[31] Yang Z, Wu Y R, Li Y, Ling H Q, Chu C C . OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol, 2009,70:219-229.
doi: 10.1007/s11103-009-9466-1
[32] 姜廷波, 陈虹, 唐鑫华, 丁宝建, 王玉成, 李凤娟, 李绍臣 . 转金属硫蛋白基因(MT1)烟草抗Cd 2+胁迫的生理特性分析 . 作物学报, 2007,33:1902-1905.
Jiang T B, Chen H, Tang X H, Ding B J, Wang Y C, Li F J, Li S C . Analysis of physiologic characteristics for Cd 2+ tolerance on transgenic tobacco expressing metallothionein gene ( MT1). Acta Agron Sin, 2007,33:1902-1905 (in Chinese with English abstract).
[33] Grispen V M J, Hakvoort H W J, Bliek T, Verkleij J A C, Schat H . Combined expression of theArabidopsis metallothionein MT2b and the heavy metal transporting ATPase HMA4 enhances cadmium tolerance and the root to shoot translocation of cadmium and zinc in tobacco. Environ Exp Bot, 2011,72:71-76.
doi: 10.1016/j.envexpbot.2010.01.005
[34] 班巧英, 刘桂丰, 王玉成, 张大伟, 蒋丽丽 . 一个新的二色补血草金属硫蛋白基因LbMT2的克隆及其表达分析. 遗传, 2008,30:1075-1082.
doi: 10.3724/SP.J.1005.2008.01075
Ban Q Y, Liu G F, Wang Y C, Zhang D W, Jiang L L . Cloning and expression of a novel metallothionein gene LbMT2 from Limonium bicolor. Hereditas(Beijing), 2008,30:1075-1082 (in Chinese with English abstract).
doi: 10.3724/SP.J.1005.2008.01075
[35] Zhang J, Zhang M, Tian S, Lu L, Shohag M J I, Yang X . Metallothionein 2 (SaMT2) fromSedum alfrediihance confers increased Cd tolerance and acumulation in yeast and tobacco. PLoS One, 2014,9:e102750.
doi: 10.1371/journal.pone.0102750 pmid: 25032704
[36] Roosens N H, Bernard C, Leplae R, Verbruggen N . Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett, 2004,577:9-16.
doi: 10.1016/j.febslet.2004.08.084 pmid: 15527754
[37] Zhu G H, Zhang J J, Chen J S, Peng X X . Characterization of a rice metallothionein type 3 gene with different expression profiles under various nitrogen forms. Biol Planta, 2008,52:668-673.
doi: 10.1007/s10535-008-0129-x
[38] Hegelund J N, Schiller M, Kichey T, Hansen T H, Pedas P, Husted S, Schjoerring J K . Barley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential Zinc binding. Plant Physiol, 2012,159:1125-1137.
doi: 10.1104/pp.112.197798
[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[4] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[5] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[6] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[7] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[8] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[9] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099.
[10] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[11] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[12] 吕冬梅, 朱广龙, 王玥, 施雨, 卢发光, 任桢, 刘昱茜, 顾立峰, 卢海潼, Irshad Ahmad, 焦秀荣, 孟天瑶, 周桂生. 苗期重金属胁迫下蓖麻生长、生理和重金属积累效应[J]. 作物学报, 2021, 47(4): 728-737.
[13] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[14] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[15] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!