欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (6): 809-818.doi: 10.3724/SP.J.1006.2020.91067

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究

韩乐,杜萍萍,肖凯()   

  1. 河北农业大学农学院, 河北保定071001
  • 收稿日期:2019-11-09 接受日期:2020-01-15 出版日期:2020-06-12 网络出版日期:2020-02-14
  • 通讯作者: 肖凯
  • 作者简介:E-mail:hanle95@163.com
  • 基金资助:
    国家自然科学基金项目(31872869);国家重点研发计划项目(2017YFD0300902)

Functional characteristics of TaPYR1, an abscisic acid receptor family gene in mediating wheat tolerance to drought stress

HAN Le,DU Ping-Ping,XIAO Kai()   

  1. College of Agronomy, Hebei Agricultural University, Baoding 071001, Hebei, China
  • Received:2019-11-09 Accepted:2020-01-15 Published:2020-06-12 Published online:2020-02-14
  • Contact: Kai XIAO
  • Supported by:
    Natural Science Foundation of China(31872869);National Key Research and Development Program of China(2017YFD0300902)

摘要:

脱落酸(ABA)受体PYR/PYL/RCAR通过与渗透胁迫诱导的ABA结合, 参与植株体内ABA介导的信号转导过程, 在调控植株干旱逆境抵御过程中具有重要的生物学功能。本文研究了鉴定的1个干旱响应的PYR家族成员TaPYR1的分子特征、应答干旱表达模式及其介导植株抵御干旱逆境的功能。结果表明, TaPYR1与植物种属中部分PYR基因在氨基酸序列水平上高度同源, 编码蛋白含有PYR家族成员保守结构域, 翻译蛋白经内质网分选后定位于细胞质膜。TaPYR1基因在小麦根、叶中均呈明显的干旱诱导表达模式, 在干旱胁迫48 h表达量达到峰值。与野生型对照(WT)相比, 超表达TaPYR1烟草转化株系, 干旱处理下植株长势增强, 干鲜重增加。干旱处理下, 转化株系较对照的光合能力增强, 细胞保护酶活性提高, 渗透调节物质脯氨酸和可溶性糖含量增加。研究表明, TaPYR1通过在转录水平上应答干旱逆境, 改善干旱胁迫下的植株相关生理过程, 在增强植株抵御干旱逆境能力中发挥重要作用。

关键词: 小麦, ABA受体基因, 表达, 遗传转化, 功能鉴定

Abstract:

ABA receptors are involved in the mediation of ABA signaling transduction through interaction with abscisic acid (ABA) molecules induced by osmotic stresses and play critical roles in regulating the drought stress tolerance in plants. In this study, TaPYR1, an ABA family gene in wheat that was shown to be differentially expressed in our previous transcriptome analysis was used to analyze its molecular property, expression patterns under drought stress condition, and functions in mediating plant adaptation to drought stress. TaPYR1 shares high similarities to its plant counterparts at amino acid level. TaPYR1 protein contains the conserved domains specified by the plant PYR proteins and was targeted onto the plasma membrane after endoplasmic reticulum (ER) assortment. The expression of TaPYR1 was induced in both roots and leaves under drought, with the highest expression levels at 48 h of drought treatment. Transgene analysis on TaPYR1 was performed to assess the gene function in mediating plant drought tolerance. Compared with wild type (WT), the tobacco lines overexpressing TaPYR1 enhanced growth vigor and increased fresh and dry weight under drought stress. In addition, the transgenic lines with TaPYR1 overexpression also increased photosynthetic function, enhanced activities of cellular antioxidant enzymes, and elevated the contents of osmolytes (i.e., proline and soluble sugar) under drought condition. Our investigation suggests that TaPYR1 transcriptively responds to drought stress signaling and plays an important role in regulating plant drought adaptation by improving the associated physiological processes.

Key words: Triticum aestivum, ABA receptor gene, expression, genetic transformation, functional characterization

附表1

NtSOD、NtCAT和NtPOD家族基因特异性扩增引物"

目的基因
Gene
登录号
Accession number
上游引物
Forward primer (5'-3')
下游引物
Reverse primer (5'-3')
NtSOD1 KJ874395 GTGGACATGTCGTGTCAAGG TTCTCACCAACTCCTGCACTT
NtFeSOD KF724056 CATCACAGAGCTTATGTCGACA CTAGAACTGACTGCTTCCCA
NtSOD2 EU123521 ATGTCACGGGACCACATTAC AACCCTTCCACCAGCATTTC
NtMnSOD2 AB093097 GACGGACCTTAGCAACAGGG ACCAATGGGTCCTGATTAGCAG
NtCAT NTU07627 GTCTCAGGCTGACAAGTCTT ACGGAAGACAGAGTAGCAGC
NtCAT1 EF532799 CAAGGATCTCTACGACTCGATT CTTGAGGGCAAATAATCCACCT
NtCAT1;1 NTU93244 TCCTGCTAATGCTCCAAAGTGT AATGCATATGTATTAGGAATGCTC
NtCAT1;2 HF564632 GGTATCGACTTGGACCAAACTA GGTCTCACATTAAGCCTAGAAG
NtCAT1;3 HF564631 TTGCAGCCGGTGGGAAGATT GGTCTCACATTAAGCCTAGAAG
NtCAT3 HF564633 GTCTTGGGCCAAACTATCTGCA TCAGCTTCACATTGTGGGCC
NtPOD1;1 L02124 GGAATTTGTCCTCAAGGTGGAA CTTATTGGAATTGCCATTTCAGC
NtPOD1;2 AB044154 CTGACATGGTCTGTGCCTAC TCAGTTGATAGCAGAGCAAACTT
NtPOD1;3 AB044153 AAGATCTTGTCGCTCTTACTGG AATTGGATTTTCCAGCTTGCG
NtPOD1;4 D11396 TGCTGGTAGTCAAAGTCAGTTTT CCCATGTTGAACACGTTCTTACC
NtPOD1;5 AB178953 AACAGCAACAACGTTAACCCAGC TTAATTTTGGACCACATTCAGGA
NtPOD1;6 AB027753 TCAACTCCACTGGTGGCCCT AATTCGATTTTGCAGCTTGCGC
NtPOD1;7 AB027752 GCCCAAGAAGTTCAGGCTCA ATACAAATACAGTCCTTTACTCG
NtPOD2;1 AB178954 AGGGGAAAAGACCTCACCAC AGTTTCCCATCTTGATCATAGCA
NtPOD4 AY032675 AGACTCAAAGATAGCAAACCTCA CTTCCTGATGTCACCCTTGA
NtPOD9 AY032674 CACCACCTTCATTCAACGCTA ACATCTCAGACAAAACACTTGTC

图1

TaPYR1蛋白的分子特征 A: TaPYR1蛋白结构预测; B: TaPYR1蛋白多重序列比对; C: TaPYR1氨基酸水平系统进化分析。"

图2

根叶中TaPYR1应答干旱胁迫逆境表达模式 0 h, 处理前对照; 6、12、24和48 h, 干旱处理时间点; R24 h和R48 h, 恢复处理时间点。"

图3

干旱胁迫下转化株系的植株生长特征 A: 干旱胁迫下TaPYR1转化株系植株生长情况; B: 干旱胁迫下TaPYR1转化株系干质量。WT, 野生型; Sen 1和Sen 2, 正义表达TaPYR1株系; Anti 1和Anti 2, 反义表达TaPYR1株系。误差线表示标准差, 符号*表示相对于WT的差异显著(P < 0.05)。"

图4

干旱胁迫下转化株系的光合特性 A: 光合速率(Pn); B: 胞间CO2浓度(Ci); C: 叶绿体光化学淬灭系数 (NPQ); D: 光系统II光化学效率(ФPSII)。误差线表示标准差, 符号*表示相对于WT的差异显著(P < 0.05)。"

图5

干旱胁迫下转化株系的气孔关闭及叶片持水特征 A: 气孔关闭特征; B: 叶片持水力。"

图6

干旱胁迫下转化株系的细胞保护酶活性及渗透物质含量 A: SOD活性; B: CAT活性; C: POD活性; D: MDA含量; E: 脯氨酸含量; F: 可溶性糖含量。误差线表示标准差, 符号*表示相对于WT的差异显著(P < 0.05)。"

图7

干旱胁迫下转化株系的保护酶基因表达模式 A: SOD家族基因; B: CAT家族基因C: POD家族基因。误差线表示标准差, 符号*表示相对于WT的差异显著(P < 0.05)。"

[1] 居辉, 熊伟, 许吟隆, 林而达 . 气候变化对我国小麦产量的影响. 作物学报, 2005,31:98-101.
Ju H, Xiong W, Xu Y L, Lin L D . Effects of climate change on wheat yield in China. Acta Agron Sin, 2005,31:98-101 (in Chinese with English abstract).
[2] Bi H, Kovalchuk N, Langridge P, Tricker P J, Lopato S, Borisjuk N . The impact of drought on wheat leaf cuticle properties. BMC Plant Biol, 2017,17:85.
[3] Arbona V, Zandalinas S I, Manzi M, González-Guzmán M, Rodriguez P L, Gómez-Cadenas A . Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. × Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors. Plant Mol Biol, 2017,93:623-640.
[4] Ha Y M, Shang Y, Yang D, Nam K H . Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. Biochem Biophys Res Commun, 2018,504:143-148.
doi: 10.1016/j.bbrc.2018.08.146
[5] Huang X, Shi H, Hu Z, Liu A, Amombo E, Chen L, Fu J . ABA is involved in regulation of cold stress response in Bermudagrass. Front Plant Sci, 2017,8:1613.
doi: 10.3389/fpls.2017.01613
[6] Li W, De Ollas C, Dodd I C . Long-distance ABA transport can mediate distal tissue responses by affecting local ABA concentrations. J Integr Plant Biol, 2018,60:16-33.
doi: 10.1111/jipb.12605
[7] Park E J, Kim T H . Production of ABA responses requires both the nuclear and cytoplasmic functional involvement of PYR1. Biochem Biophysic Res Commun, 2017,484:34-39.
[8] Liu S, Lü Z, Liu Y, Li L, Zhang L . Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genet Mol Biol, 2018,41:624-637.
[9] Sussmilch F C, Atallah N M, Brodribb T J, Banks J A, Mcadam S A M . Abscisic acid (ABA) and key proteins in its perception and signaling pathways are ancient, but their roles have changed through time. Plant Sig Behav, 2017,12:e1365210.
[10] Han S, Min M K, Lee S Y, Lim C W, Bhatnagar N, Lee Y, Shin D, Chung K Y, Lee S C, Kim B G, Lee S . modulation of ABA signaling by altering VxGPhiL motif of PP2Cs in Oryza sativa. Mol Plant, 2017,10:1190-1205.
doi: 10.1016/j.molp.2017.08.003
[11] Nakashima K, Yamaguchi-Shinozaki K . ABA signaling in stress- response and seed development. Plant Cell Rep, 2013,32:959-970.
doi: 10.1007/s00299-013-1418-1
[12] Verslues P E . ABA and cytokinins: challenge and opportunity for plant stress research. Plant Mol Biol, 2016,91:629-640.
[13] Dittrich M, Mueller H M . The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nat Plants, 2019,5:1002-1011.
[14] Huang A X, She X P, Zhao J L, Zhang Y Y . Inhibition of ABA-induced stomatal closure by fusicoccin is associated with cytosolic acidification-mediated hydrogen peroxide removal. Bot Stud, 2010,55:33.
[15] Guo C, Zhao X, Liu X, Zhang L, Gu J, Li X, Lu W, Xiao K . Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions. Planta, 2013,237:1163-1178.
[16] Sun Z H, Ding C H, Li X J, Xiao K . Molecular characterization and expression analysis of TaZFP15, a C2H2-type zinc finger transcription factor gene in wheat ( Triticum aestivum L.). J Integr Agric, 2012,1:35-46.
[17] Huang X S, Liu J H, Chen X J . Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol, 2010,10:230.
doi: 10.1186/1471-2229-10-230
[18] Wang X H, Xu K Z, Li D Y, Zhang Z A, Wu Z H . Changes of soluble sugar content and specific leaf weight in soybean genetic improvement. Soybean Sci, 2007,26:879-884
[19] Joo H, Lim C W, Lee S C . Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling. Sci Rep, 2016,6:30097.
[20] Lim C W, Lee S C . Pepper protein phosphatase type 2C, CaADIP1 and its interacting partner CaRLP1 antagonistically regulate ABA signalling and drought response. Plant Cell Environ, 2016,39:1559-1575.
[21] Park C, Lim C W, Baek W, Kim J H, Lim S, Kim S H, Kim K N, Lee S C . The pepper WPP domain P protein, CaWDP1, acts as a novel negative regulator of drought stress via ABA signaling. Plant Cell Physiol, 2017,58:779-788.
[22] Fujita Y, Yoshida T, Yamaguchi-Shinozaki K . Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant, 2013,147:15-27.
[23] Han S, Lee Y, Park E J, Min M K, Lee Y, Kim T H, Kim B G, Lee S . Structural determinants for pyrabactin recognition in ABA receptors in Oryza sativa. Plant Mol Biol, 2019,100:319-333.
doi: 10.1007/s11103-019-00862-6
[24] Tischer S V, Wunschel C, Papacek M, Kleigrewe K, Hofmann T, Christmann A, Grill E . Combinatorial interaction network of abscisic acid receptors and coreceptors from Arabidopsis thaliana. Proc Natl Acad Sci USA, 2017,114:10280-10285.
doi: 10.1073/pnas.1706593114
[25] Yang J, Zhao S, Zhao B, Li C . Overexpression of TaLEA3 induces rapid stomatal closure under drought stress in Phellodendron amurense Rupr. Plant Sci, 2018,277:100-109.
[26] Jin J, Lauricella D, Armstrong R, Sale P, Tang C . Phosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisol. Ann Bot, 2015,116:975-985.
[27] Shi G C, Fu J Y, Rong L J, Zhang P Y, Xiao K . TaMIR1119, a miRNA family member of wheat ( Triticum aestivum), is essential in the regulation of plant drought tolerance. J Integr Agric, 2018,17:2369-2378.
doi: 10.1016/S2095-3119(17)61879-3
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[7] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[8] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[9] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[10] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[11] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[12] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[13] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[14] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[15] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!